
Cybernetics Oriented Programming

(CYBOP)

An Investigation on the Applicability of Inter-Disciplinary Concepts

to Software System Development

Christian Heller

Cybernetics Oriented Programming

(CYBOP)

An Investigation on the Applicability of Inter-Disciplinary Concepts

to Software System Development

Ilmenau

Cataloging-in-Publication Data

Christian Heller.

Cybernetics Oriented Programming (CYBOP):

An Investigation on the Applicability of Inter-Disciplinary Concepts

to Software System Development

Ilmenau: Tux Tax, 2006

ISBN-10: 3-9810898-0-4

ISBN-13: 978-3-9810898-0-6

Information on Ordering this book

http://www.tuxtax.de, http://www.cybop.net

Written as Dissertation

Supervisor 1: Prof. Dr.-Ing. habil. Ilka Philippow (Chair), Technical University of Ilmenau

Supervisor 2: Prof. Dr.-Ing. habil. Dietrich Reschke, Technical University of Ilmenau, Germany

Supervisor 3: Mark Lycett (PhD), Brunel University, Great Britain

Submission: 2005-12-12; Presentation: 2006-10-04

Copyright c© 2002-2006. Christian Heller. All rights reserved.

Cover Illustration: TSAMEDIEN, Düsseldorf

Printing and Binding: Offizin Andersen Nexö, Leipzig/ Zwenkau

Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover Texts and with no Back-Cover Texts.

A copy of the license is included in the section entitled ”GNU Free Documentation License”.

Trademark Credits

Most of the software-, hardware- and product names used in this document are also trademarks

or registered trademarks of their respective owners.

Donations

Companies planning to publish this work on a grand scale are asked to notify the author

<christian.heller@tuxtax.de> and to consider donating some of their sales revenues, which will

be used exclusively for the CYBOP and Res Medicinae free software projects.

Text printed on recycled and acid-free paper.

Printed in Germany

To all kind-hearted People who contribute to Humanity;

against Those whose only Aim in Life is to amass Money

Contents

Preface xv

1 Introduction 1

1.1 Information Science . 1

1.2 Software Crisis . 2

1.3 Motivation . 4

1.4 Cybernetics . 5

1.5 Method . 5

1.6 Example . 7

1.7 Structure . 8

I Basics 11

2 Software Engineering Process 13

2.1 Waterfall Process . 14

2.2 Iterative Process . 14

2.3 Agile Methodologies . 16

2.4 Extreme Programming . 17

2.5 Method Maturity . 19

2.6 Abstraction Gaps . 19

2.7 Software Architecture . 22

3 Physical Architecture 25

3.1 Process . 26

3.2 Application Server . 27

viii Contents

3.3 Database Server . 28

3.4 Presentation Client . 30

3.5 Web Client and Server . 31

3.6 Local Process . 32

3.7 Human User . 33

3.8 Peer Node . 34

3.9 Remote Server . 35

3.10 Legacy Host . 36

3.11 Systems Interconnection . 37

3.12 Scalability . 39

3.13 Misleading Tiers . 40

4 Logical Architecture 43

4.1 Paradigm and Language . 45

4.1.1 Language History . 45

4.1.2 Paradigm Overview . 47

4.1.3 Hardware Architecture . 48

4.1.4 Machine Language . 51

4.1.5 Assembly Language . 51

4.1.6 Structured- and Procedural Programming 51

4.1.7 System Programming . 57

4.1.8 Typeless Programming . 58

4.1.9 Functional Programming . 58

4.1.10 Logical Programming . 60

4.1.11 Data Manipulation Language . 61

4.1.12 Markup Language . 61

4.1.13 Page Description Language . 66

4.1.14 Hardware Description Language . 67

4.1.15 Object Oriented Programming . 68

4.2 Pattern . 79

4.2.1 Architectural . 81

4.2.2 Design . 97

4.2.3 Idiomatic . 103

4.2.4 Framework . 107

4.3 Component Oriented Programming . 109

4.3.1 Inversion of Control . 110

Contents ix

4.3.2 Component Lifecycle . 111

4.3.3 Interface and Implementation . 112

4.3.4 Separation of Concerns . 113

4.3.5 Spread Functionality . 115

4.3.6 Aspect Oriented Programming . 117

4.3.7 Agent Oriented Programming . 120

4.4 Domain Engineering . 122

4.4.1 Tool & Material . 124

4.4.2 Generics . 124

4.4.3 Domain Specific Language . 125

4.4.4 Specification Language . 127

4.4.5 Generative Programming . 131

4.4.6 Model Driven Architecture . 131

4.4.7 Model and Code . 133

4.5 Knowledge Engineering . 135

4.5.1 Representation Principles . 137

4.5.2 Date and Rule . 137

4.5.3 Agent Communication Language . 138

4.5.4 Semantic Web . 141

4.6 Conceptual Network . 143

4.6.1 Ontos and Logos . 144

4.6.2 Applicability . 145

4.6.3 Two Level Separation . 145

4.6.4 Building Blocks . 146

4.6.5 Terminology . 148

4.6.6 Schemes . 149

4.6.7 Ontology . 152

4.6.8 Archetype . 153

4.6.9 Dual Model Approach . 155

4.7 Modelling Mistakes . 158

5 Extended Motivation 161

5.1 Idea . 162

5.2 Recapitulation . 163

5.3 Approach . 165

x Contents

II Contribution 171

6 Statics and Dynamics 173

6.1 Virtual- and Real World . 173

6.1.1 Mind and Body . 173

6.1.2 Brain Regions . 176

6.1.3 Cell Division . 177

6.1.4 Short- and Long-Term Memory . 178

6.1.5 Information Processing Model . 180

6.1.6 Persistent and Transient . 181

6.2 System and Knowledge . 182

6.2.1 Configurable or Programmable . 182

6.2.2 Code Reduction . 184

6.2.3 Base- and Meta Level . 185

6.2.4 Reference- and Archetype Model . 185

6.2.5 Common- and Crosscutting Concerns 186

6.2.6 Application and Domain . 187

6.2.7 Platform Specific and -Independent . 189

6.2.8 Agent with Mental State . 189

6.2.9 Data Garden . 190

6.3 Knowledge Management System . 192

6.3.1 Hardware Connection . 192

6.3.2 Memory . 194

6.3.3 Processing . 194

6.3.4 Lifecycle . 196

7 Knowledge Schema 199

7.1 Human Thinking . 199

7.1.1 Basic Behaviour . 199

7.1.2 Conglomerate . 201

7.1.3 Abstraction . 202

7.1.4 Interaction . 207

7.1.5 Intrinsic or Extrinsic Properties . 210

7.1.6 Language . 210

7.1.7 Quality and Quantity . 213

7.2 Design Reflections . 214

Contents xi

7.2.1 Pattern Systematics . 214

7.2.2 Recommendation . 216

7.2.3 Model Metamorphosis . 217

7.2.4 Structure by Hierarchy . 221

7.2.5 Association Elimination . 222

7.2.6 Hierarchical Algorithm . 224

7.2.7 Framework Example . 225

7.2.8 Categorisation versus Composition . 229

7.3 Knowledge Representation . 230

7.3.1 Knowledge Ontology . 230

7.3.2 Schema . 234

7.3.3 Double Hierarchy . 235

7.3.4 Modelling Example . 237

7.3.5 Container Unification . 239

7.3.6 Universal Memory Structure . 239

8 State and Logic 243

8.1 A Changing World . 243

8.1.1 Change follows Rules . 243

8.1.2 From Philosophy to Mathematics . 244

8.1.3 System . 247

8.1.4 Self Awareness . 250

8.1.5 Communication . 253

8.2 Translator Architecture . 257

8.2.1 Interacting Systems . 257

8.2.2 Basic Patterns . 259

8.2.3 Placement . 261

8.2.4 Simplification . 262

8.2.5 Communication Model . 263

8.3 Knowledge Abstraction and -Manipulation . 265

8.3.1 Algorithm . 265

8.3.2 Operations . 266

8.3.3 Primitives . 266

8.3.4 Logic Manipulates State . 267

8.3.5 Without Capsules? . 269

xii Contents

III Proof 271

9 Cybernetics Oriented Language 273

9.1 Formality . 273

9.2 Definition . 274

9.2.1 Syntax . 275

9.2.2 Vocabulary . 276

9.2.3 Semantics . 281

9.2.4 Tag-Attribute Swapping . 283

9.3 Constructs . 284

9.3.1 State Examples . 284

9.3.2 Logic Examples . 289

9.3.3 Special Examples . 293

9.3.4 Inheritance as Property . 299

9.3.5 Container Mapping . 300

9.3.6 Hidden Patterns . 301

9.4 Comparison . 301

9.4.1 RDF . 302

9.4.2 OWL . 303

9.5 Tool Support . 305

9.5.1 Template Editor . 305

9.5.2 Knowledge Designer . 306

9.5.3 Model Viewer . 310

10 Cybernetics Oriented Interpreter 313

10.1 Architecture . 313

10.1.1 Overall Placement . 313

10.1.2 Inner Structure . 314

10.1.3 Pattern Merger . 316

10.1.4 Kernel Concepts . 317

10.1.5 Security . 319

10.2 Functionality in Detail . 321

10.2.1 Process Launching . 322

10.2.2 Lifecycle Management . 322

10.2.3 Signal Checking . 323

10.2.4 Signal Handling . 323

Contents xiii

10.2.5 Operation Execution . 324

10.2.6 Model Transition . 324

10.2.7 Data Creation . 325

10.3 Implementation . 327

10.3.1 Simplified C . 327

10.3.2 Corrected C . 328

10.3.3 Used Libraries . 328

10.3.4 Development Environment . 329

10.3.5 Error Handling . 329

10.3.6 Distribution and Installation . 330

11 Res Medicinae 331

11.1 Project . 331

11.1.1 Free and Open Source Software . 331

11.1.2 Portals and Services . 332

11.1.3 Tools . 333

11.1.4 Contributors . 334

11.2 Analysis . 335

11.2.1 Requirements Document . 335

11.2.2 EHR & Co. 335

11.2.3 Episode Based . 337

11.2.4 Evidence Based . 338

11.2.5 Continuity of Care . 339

11.2.6 Core Model . 339

11.3 Standards . 341

11.3.1 Overview . 341

11.3.2 Record Modelling . 342

11.3.3 Messaging and Communication . 344

11.3.4 Terminology Systems . 347

11.3.5 Further Standards . 352

11.3.6 Standards Development . 355

11.3.7 Implication . 356

11.4 Realisation . 357

11.4.1 Student Works . 357

11.4.2 First Trial . 359

11.4.3 Knowledge Separation . 360

xiv Contents

11.4.4 Reimplementation . 362

11.4.5 Module Modelling . 363

IV Completion 367

12 Review 369

12.1 Validation . 369

12.1.1 Distinction of Statics and Dynamics . 370

12.1.2 Usage of a Double-Hierarchy Knowledge Schema 372

12.1.3 Separation of State- and Logic Knowledge 373

12.2 Evaluation . 374

12.2.1 Knowledge Triumvirate . 374

12.2.2 Common Knowledge Abstraction . 376

12.2.3 Long-Life Software System . 377

12.3 Limits . 378

13 Summary and Outlook 381

13.1 Summary . 381

13.2 Future Works . 383

13.3 Fiction . 387

14 Appendices 389

14.1 Abbreviations . 389

14.2 References . 409

14.3 Figures . 437

14.4 Tables . 443

14.5 History . 445

14.6 Migration to CYBOL . 453

14.7 Call for Developers . 455

14.8 Abstract . 457

14.9 Kurzfassung . 459

14.10Licences . 461

14.10.1GNU General Public License . 461

14.10.2GNU Free Documentation License . 469

14.11Index . 479

Preface

I slept and dreamt that Life was Joy.

I awoke and saw that Life was Service.

I acted and behold, Service was joy.

Rabindranath Tagore

Prologue

To me, basically, there are two ways to deal with a scientific subject:

1. The deepened investigation on a special area aiming to find completely new phe-

nomenons

2. The systematic subsumption of multiple known aspects of one or many disciplines

aiming to find new cross-correlations and ideas

Both approaches may lead to new theories, methods and concepts. And both may use

laboratory trials to find and prove their theories. This work follows the second approach.

The idea behind is, simply spoken, to steal ideas from nature and various fields of science,

and to apply them to software design.

Laboratory Trials are what Coding is in informatics – experiment and proof of operability, at

the same time. Some information scientists have the opinion that coding weren’t scientific

enough and not necessary to create new theories or to achieve good results. I doubt this. In

my opinion, there are things that can only be found when actually implementing ideas in a

computer language. And in the end, a theory is worth much more when having been proven

in practice. This document contains proven ideas that were growing in my mind over the

last few years, while dealing with topics such as:

xvi Preface

- Structured- and Procedural Programming

- Object Oriented Programming

- Design Patterns and Frameworks

- Component Based Design and Agents

- Ontology Structured Domain Knowledge

- Document- and User Interface Markup

- Persistence Mechanisms

- System Communication

- Operating System Concepts

The usage of typical buzzwords could not quite be avoided in this work, yet do I hope that

the ideas and results are nevertheless explained straightforward and well enough to be really

useful to some other developers out there.

This document claims to be an Academic Paper. To all practitioners who do not want to

read it for that reason, I would like to point out that each and every concept in it arose from

practice, that is coding. Like most developers, I started up with only a few lines of code in

one Java class, later extended to more classes, a whole framework and so on. Whenever I

stumbled over difficulties, I thought through and improved my current design by applying

patterns recommended by several software development Gurus. It was only when I realised

that even those concepts were not sufficient, that I made up my own. They are entitled

Cybernetics Oriented Programming (CYBOP), because most ideas behind them stem from

nature.

Finally, this document has become my thesis, written to earn a doctorate (Dr.-Ing./ PhD)

in Informatics/ Software Engineering. You may wonder why I release it under the Free

Documentation License (FDL). Well, I’m a full supporter of the idea of Free Knowledge,

Free Software, a Society free of Patents which are only hindering its development. There

are three reasons that have contributed to my decision:

1. Hope to get helpful Feedback from readers

2. Trust in the scientific Fairness of colleagues, worldwide, to properly reference this

document even though it is licensed under the FDL

3. Wish to contribute to the open source movement now (and not in some years when the

document might reach a more stable version), to speed up its successful development

Preface xvii

This is a growing document undergoing steady development. It is not and doesn’t claim to

be free of errors nor to contain the only possible way for application system development.

So, if you find errors of whatever kind or have any helpful ideas or constructive critics,

then please contribute them to <christian.heller@tuxtax.de> or to the CYBOP developers

mailing list <cybop-developers@lists.berlios.de>!

Scientific Progress

An Abstraction allows to capture the real world by representing it in simplified models. Such

models contain only the essential aspects of a special domain. Any unimportant nuances, in

the considered context, are neglected. Correct abstract models is what makes science easy.

Good science can be easy. If it is not, then probably either:

- there is a mistake in the model

- it is not fully understood by the scientist him/ herself

- the explaining person wants to keep back knowledge, making others look clueless

One of the biggest hindrances to scientific progress is too much or false respect for existing

solutions. No theory/ model/ concept is ever finished; no document/ software/ product is

ever fully completed. There is always room for improvements. In the end, it is all just a

person’s subjective perception and an arbitrary, abstract extract of the real world.

It is always worth reviewing and questionning everything in depth, again and again. Stand-

still means regress. The best example showing how to work around these critics is the

Free and Open Source Software (FOSS) movement where all the time, existing solutions are

rewritten, to be improved.

Software Patents

This work is about software. Software abstracts the real world, its items and processes, and

it can store these information and their relations which make up actual Knowledge. In the

modern, so-called Information Society, it becomes more and more important to have free

access to external knowledge. This is an essential human right and will decide about the

future living quality of people.

xviii Preface

So much the important it is to prohibit the application of patents to software! They make an

exclusive club of large companies own the rights on banal, ordinary, day-to-day algorithms

and methods that many people use. And, they thereby kill any new ideas and hinder

research efforts that depend on these basic algorithms. If Software Patents and patents on

Computer Implemented Inventions (CII) got introduced, any free software developer and

especially Small- and Medium Sized Enterprises (SME), the driving force of innovation,

could not unfold their full potential anymore, since much of their time and effort would then

have to go into patent inquiries and costly legal disputes.

Software patents are dangerous for the free development of thoughts! Certain lobbies exert

an increasing influence on politics and push members of parliaments to agitate and vote in

their interest. Since probably every reader of this document has an interest in informatics,

every reader is also affected by the software patent enforcement. But everybody can do

something about it, not only in Europe! Express your protest and sign the petition at [91]!

Free Publishing

Reputation in the scientific world strongly depends on the number of publications in scientific

journals, conference proceedings, magazines etc., of which some have greater kudos, some

less. A Philosophiae Doctor (PhD) student, for example, is expected to publish in some

of the acknowledged journals, in order to be conferred a doctorate. The grant of project

fundings by local-, national- or European Union (EU) governements and sponsorship of

a professor’s department at university depend on it as well. Some unfair practices and

shortcomings of the current system of publication shall therefore be mentioned here. There

are at least four disadvantages of publishing in scientific journals. An author:

• is almost always forced to assign his copyright to the publisher;

• has very little chance of publishing completely new ideas, since evaluators (which

are to guarantee a certain scientific level) sieve those which seem too crazy or are

unknown to them and do not match state-of-the-art science, so that really new ideas

can hardly become popular in this way;

• has to wait many months before being informed about article acceptance, sometimes

further months to presentation at a conference and yet more months until a journal/

proceedings are finally available – which, besides the unfine delay, is enough time for

an evaluator to adapt the best ideas and publish them in a modified form before;

Preface xix

• and everyone else have to pay money for receiving journals (even for the one containing

the author’s own work), or become a member of certain scientific societies for some

discount – which means that the work is not freely accessible.

Further, there is something often labelled Citation Mafia. Whether an article gets published

in a journal or not depends on it being accepted by a number of reviewers (normally three).

In order to avoid personal battles, the article author never gets to know the evaluators’

names or proficiency and has to blindly rely on the good taste of a conference’s program

committee. However, evaluators, although tied to ethical standards, often seem to have their

list of friends or seem to just prefer authors who have already published elsewhere, leading

to circles of scientists citing each other, quite independent from the quality of their papers.

Logically, also here, there are a number of disadvantages:

• Young scientists have a hard life and need a long time for getting their articles ac-

cepted, independent from how innovative they are.

• Mafioso scientists often warm up old stories or deliver well-formulated, but rubbish

articles not earning the predicate scientific.

Don’t ask for proof – I don’t have it. But almost everybody in the scientific business knows

about these issues. Unfortunately, only few people [166] talk about- or try to change them.

Obviously, many scientists prefer to either play the same old game or are scared of personal

disadvantages. However, it feels like increasingly more researchers, in particular the new

generation, become aware that these drawbacks hinder scientific progress and new solutions

need to be found. Well, there is free online journals such as the Journal of Free and Open

Source Medical Computing (JOSMC) [226] or the BioMed Central (BMC) [326] publisher,

where research articles are: free to access immediately, peer reviewed, citation-tracked . . .

Although this document cannot deliver solutions to the above-mentioned problems, it men-

tioned those to inform the reader and spur further discussion. Supportive actions in this

process would be that:

• scientists acknowledge no-cost entry open source conferences like LinuxTag & Co. [82]

as alternatives to traditional ones

• professors more readily accept citations of free knowledge sources such as Wikipedia

[60] in scientific works of their students

• students and scientists publish their works (code and documentation) under open

source licenses

xx Preface

New Science

It was end of October 2004 that I discovered Stephen Wolfram’s book A New Kind of Science

[344] (published in 2002), through a link in Wikipedia [60]. By that time, I was already

heavily writing on my own work.

During those years of thinking about software systems, nature, the universe – I felt pretty

similar to how Wolfram describes it in the preface of his book. Starting with an inspection

of state-of-the-art techniques, diving deeper and deeper into several topics, I soon realised

that they all could not deliver a coherent, conclusive solution to software modelling. Each

had its own drawbacks that made workarounds necessary. And, the more I dived into the

different technologies, the more complex, complicated, intransparent they got – but still,

none seemed to provide an overall solution.

It was only when I got more and more distance to existing solutions and moved away from

current thinking, towards a more universal approach and a view at software systems through

the eyes of nature, that I found the basic principles described in this work.

Now, after having read A New Kind of Science, I am glad that Wolfram did not already

write down everything I want to say, so that there is something left for me to contribute, by

delivering this work :-) There is one difference that soon became obvious to me: Wolfram

argues, that it is possible to study the abstract world of simple programs, and take lessons

from what kinds of things occur there and have them in mind when investigating natural

systems [60]. My work follows the exact opposite way, in that it observes phenomenons of

nature and concepts used in other sciences, and tries to apply them to the design of software

systems.

This is not to say that CYBOP does provide the overall solution. But what it surely wants

to reach is to encourage people to think in more general terms, across disciplines, to possibly

find new concepts. And for that, this work hopes to deliver some ideas. And I certainly do

hope that the more you, as readers, think about these ideas, the more sense they will make

to you, too.

Stylistic Means and Notation

The language of choice in this document is British English, more precisely known as Com-

monwealth English. Exceptions are citations or proper names like Unified Modeling Lan-

Preface xxi

guage, stemming from American English sources. (In Oxford English, Modelling would be

written with double letter l). I am thinking about writing a German version of this doc-

ument, but am not sure if it will be worth the effort. If you as reader are interested in a

translation, send me a short note! The more emails I receive, the more convinced I will be.

Correctly, masculine and feminine forms are used in a work. When describing a patient’s

record, for example, one would write: his or her record. In order to improve readability, and

exclusively because of this reason, only masculine forms are used in this work.

The document sticks to the widespread Unified Modeling Language (UML) [235] standard

notation for describing classical software concepts in diagrams, wherever suitable. Minor

simplifications are applied wherever these result in a clearer illustration with better overview.

Pieces of software source code are displayed in Typewriter Typeface. Emphasised words

are italicised.

Footnotes are not used on purpose. In my opinion, they only interrupt the flow-of-reading.

Remarks are placed in context instead, sometimes enclosed in parentheses.

To all authors and contributors of the Wikipedia Encyclopedia:

I have cited so many Wikipedia articles in this work, that it would not have been possible to

create an extra bibliography entry for each of them, without letting the frame of this work

explode. Therefore, I have just referenced Wikipedia in general, whenever one of its articles

was used.

Some scientists still label Wikipedia a Pseudo Encyclopedia not worth being mentioned in

scientific works. However, it is my firm believe that this will change in the near future and

one day, it will be hard to write any work without referencing Wikipedia knowledge, which

will then (if not already now) be of best quality.

Acknowledgements

Certainly, first thanks is due my wife Kasia and my Parents and Sisters, being always with

me, in good as in bad times. Not less important to me are my aunt Maria Kosiza, my great

Relatives and our former chaplain Johannes Preis, who have helped shaping me the way I

am.

I would like to thank my professor, Ilka Philippow, for greatly encouraging me during my

work while leaving enough room to develop my own ideas. Equal thanks is due my supervi-

xxii Preface

sors Dietrich Reschke and Mark Lycett. Detlef Streitferdt and Bernd Däne gave numerous

hints improving the quality of the first part of my work. Consultation with Bernd and Wolf-

gang Fengler helped me understand Petri Net diagrams and their hardware background as

well as Assembler programming. Whenever I got doubts about what I was doing, I was very

lucky to receive good motivation from my colleagues Volker Langenhan, Oswald Kowalski,

Todor Vangelov and Kai Böllert. Oswald’s talks about hardware concepts made me find

useful parallels to software. Alexander Fleischer helped out when I was struggling with

LATEX’s paper size option.

My thanks go to my students Jens Bohl, Torsten Kunze, Dirk Behrendt, Kumanan Kana-

gasabapathy, Jens Kleinschmidt, Martin Fache, Karsten Tellhelm, Marcel Kiesling, Teodora

Kikova, Dennis Reichenbach, Stefan Zeisler, Michael Simon, Henrik Brandes and Saddia

Malik for contributing their theses, tutorials or source code to the project. Special thanks

to Rolf Holzmüller who brought in some innovative ideas for CYBOL, in the final phase of

my work, and helped cleaning many bugs in CYBOI.

Reminiscences on good times go to my former colleagues of OWiS Software who, together

with the Technical University of Ilmenau (TUI), have contributed with great commitment

to the development of the Object Technology Workbench (OTW) UML tool which I would

have liked to use in the early stages of my work. Pity it hasn’t gone Open Source after its

development was stopped in 2000 :-(Thanks to Martin Wolf, Rene Preißel, Dirk Henning

and all colleagues who have been patient and well-explaining teachers!

I would like to acknowledge the contributors of CYBOP [256] and Res Medicinae [266],

especially all medical doctors, e.g. Claudia Neumann and Karsten Hilbert, who supported

the second project with their analysis work [135] and mailing list discussions. Furthermore,

I want to mention Thomas Beale from the OpenEHR project [22] whose freely published

design document (back in 2001) gave me some initial ideas in the early stage of my work. Ac-

knowledged be all these brave Enthusiasts of the Free/ Libre Open Source Software (FLOSS)

community, who have provided me with a great amount of knowledge through a comprising

code base to build on. I shall mention the contributors of FLOSS projects such as Scope

[267], Apache Jakarta [253], JOS [261], JDistro [260], the OpenHealth [168] mailing list

readers, the OSHCA [241] members and all other supporters of our projects and ideals.

Great thanks goes to the Urban und Fischer publishing company, for providing anatomical

images from their Sobotta: Atlas der Anatomie [319] and to the Open Clip Art project [103]

for its wonderful library of free art! Similarly, I have to thank the free online dictionaries of

LEO [72] and the Technical University of Chemnitz [51].

Preface xxiii

I am grateful to all people who openly publish their knowledge on the web. Without the

numerous free sources, I would have never been able to accomplish this work. Especially in

the state-of-the-art part, I had to heavily rely on existing sources. It is also therefore that

I have decided to put my work under the GNU FDL licence [104]. I would be happy to see

large parts of it copied in Wikipedia [60]!

Let me finish this preface with Arthur Schopenhauer’s words:

All truth passes through three stages:

First, it is ridiculed.

Second, it is violently opposed.

Third, it is accepted as being self-evident.

Thank you for reading!

Ilmenau, October 2006 Christian Heller <christian.heller@tuxtax.de>

1 Introduction

Even a Way of a thousand Miles begins with one Step.

Saying

Information Technology is gaining more and more importance in modern society. Some

people even talk of the Information Age. What Electricity was for the Industrial Age,

Information is for today’s society.

And Software plays one of the, if not the most important role thereby.

1.1 Information Science

Science is one form in which humans express their aspiration for Perception. It should

– but unfortunately not always does – serve the well-being of people. Similarly, scientific

Inventions usually are to ease human’s life.

The results of many technical inventions are Tools, Machines or Robots (figure 1.1). A

passive tool is a mostly simple device used by humans to carry out a task better. The word

machine is used to describe advanced, active tools which can run by themselves, only driven

by an external force like steam or electrical energy. A robot, finally, is an enhanced machine

which may imitate human behaviour (humanoid) or take over (industrial) tasks that are

too dirty, dangerous, difficult, repetitive or dull for humans [60]. Its parts are often called

Hardware. It does not necessarily have the same shape as the human body but can come

very close. Also, it contains some pieces of rudimentary Intelligence that lets it act alone

(autonomous). The intelligence basically controls the way in which the robot functions what

is sometimes called Workflow or Program. That must be encoded, for example in form of a

Punchcard or pieces of Software, kept as pure text or binary data in some electronic memory

2 1 Introduction

active

software

Figure 1.1: Scientific Inventions

or on a storage medium.

A Computer can be seen as handicaped robot that can think but not move. Essentially,

it represents the intelligent parts of a robot and is able to process (compute) Information

(data content of a message [71]). But its hardware is pruned to pure information input and

output. While the importance of robots lies in their Movement actions, it lies in problem

Solving and system Simulation for computers [60]. Software plays the biggest role thereby.

It contains the programs after which a computer is run, after which it acts.

One important area the science of information, called Informatics, deals with is software –

the art of representing and processing information. As such, one of its major aims is to find

Abstract Models which represent the real world best. The better this is done and the better

information can be stored and processed, the better software can assist its human users.

1.2 Software Crisis

An early question in software engineering was how to write programs that control a computer

system’s Hardware correctly and efficiently. Over time, the importance of hardware shifted

in favour of Software which nowadays contains most of the logic needed to run an application

on a computer system. Consequently, much more research emphasis is now placed on the

1.2 Software Crisis 3

finding of clever modelling concepts that help writing correct and effective, stable and robust,

flexible and maintainable, secure software. Another objective is to increase the effectiveness

and lessen the expenditure of cost and time in software development projects, by reusing

(pieces of) software.

The past 40 years have delivered numerous helpful concepts, for instance Structure and

Procedure, Class and Inheritance, Pattern and Framework, Component and Concern, and

many more. They undoubtedly have moved software design far forward. Nevertheless, the

dream of true componentisation and full reusability has not been reached. Czarnecki [66]

identifies problems in the four areas: Reuse, Adaptability (in this work also called Flexibility),

management of Complexity and Performance.

Modern software is very complex. It runs on different hardware platforms, uses multiple

communication paradigms and offers various user interfaces. Many tools and methods assist

experts as well as engineers in creating and maintaining software but do they not seem

sufficient to cope with the complexity so that often, systems still base on buggy source code

causing:

- False Results

- Memory Leaks

- Endless Loops

- Weak Performance

- Security Holes

Are these exclusively the fault of software developers? Or, are the used concepts perhaps

insufficient? Using the same, allegedly unsatisfying concepts caused some people to talk

about an ongoing Software Crisis, sometimes Complexity Crisis, affecting not only high-

level application programming, but also low-level microchip design [67].

However, answers are not easy to find. Software design is Arts and Engineering, at the same

time. Not everything is or can be regulated by rules. It is true, developers have to stick to a

set of design rules – and tools that support their usage exist – but they also have to be very

creative. All the time, they have to have new, innovative ideas and apply them to software.

This is what makes the creation, integration, test and maintenance of software so difficult.

There is not really a uniform way of treating it.

4 1 Introduction

1.3 Motivation

To the issues that this work has with some state-of-the-art solutions belong in particular

three things:

1. Abstraction Gaps in Software Engineering Process (chapter 2)

2. Misleading Tiers in Physical Architecture (chapter 3)

3. Modelling Mistakes in Logical Architecture (chapter 4)

The traversing of abstraction gaps in a software engineering process belongs to the main

difficulties in software development, and causes considerable cost- and time effort. It neces-

sitates a steady synchronisation between domain experts and application system developers,

because their responsibilities cannot be clearly separated and interests often clash. A first

objective of this work is therefore to contribute to closing these gaps, especially the one

existing between a designed system architecture and the implemented source code.

The misinterpretation of the physical tiers in an information technology environment often

leads to wrong-designed software architectures. Logical layers are adapted to physical tiers

(frontend, business logic and backend) and differing patterns are used to implement them.

Instead, systems should be designed in a way that allows the usage of a unified translator

architecture, so to give every application system the capability to communicate universally

by default, which is the second objective of this work.

Several well-known issues exist with the modelling of logical system architectures, for exam-

ple: fragile base class problem, container inheritance, bidirectional dependencies, global data

access. These and others more result from using wrong principles of knowledge abstraction,

like the bundling of attributes and methods in one class, as suggested by object oriented

programming, or the equalising of structural- and meta information in a model. A third

and final aim of this work is therefore to closer investigate the basic principles and concepts

after which current software systems are created, and to search for new ideas and concepts,

with the objective of finding a universal type structure (knowledge schema).

On its search for new ideas, this work intentionally tries to cross the borders to other scientific

disciplines. It can therefore also be called an inter-disciplinary effort. Results from many

different sciences are applied to software engineering. Most emphasis, however, is placed on

the comparison between human- and computer systems. Nature has always been a good

teacher and its principles have often been copied; so does this work.

1.4 Cybernetics 5

1.4 Cybernetics

One scientific subject being inter-disciplinary since its creation is Cybernetics. Its name

stems from the ancient Greek word Kybernetes meaning Steersman and it has many def-

initions [134]. One that was coined in 1948 by Norbert Wiener sees Cybernetics as the

science of information and control, no matter whether it is about living things or machines.

The American Heritage Dictionary of the English Language [251] defines it as the theoret-

ical study of communication and control processes in biological, mechanical, and electronic

systems, especially the comparison of these processes in biological and artificial systems.

The closely related subject of Bionics is a specialisation of cybernetics (Bionics = Bio-

Cybernetics) [73]. It can be defined as the application of biological principles to the study

and design of engineering systems [251].

Other related fields which are not considered further in this work are morphology (structure-

function), general systems theory (complexity, isomorphic relationships), biomechanics (pros-

thetics), biomimetics, robotics and artificial intelligence. However, the results described in

this document might also be of importance in those areas.

Since Software Engineering is a kind of Systems Engineering, the consideration of systems as

a whole gains in importance. Cybernetics as science of observing, comparing and controlling

biological and technical systems is of great importance in the document on hand. Using

models inspired by biology and psychology (but also further disciplines such as philosophy

or physics), the science of Bionics plays an important role, too.

Sticking to the system idea of Wiener and in the fashion of the science of Bionics, this

work and the new concepts described therein are called Cybernetics Oriented Programming

(CYBOP).

1.5 Method

Despite all scientific methodology, research is mostly a journey into the blue. Likewise did

this work not follow a linear way of progression, but rather a zigzag course between theory

and practice (figure 1.2), which may be labelled Constructive Development.

At the beginning, there was the wish to create a software application for use in medicine.

Development started off by using classical programming techniques. Whenever a problem

occured, it was solved by applying yet more up-to-date techniques and latest software design

6 1 Introduction

practice theory

monolithic java application

hierarchical universe

top-level container

system-knowledge separation

body and mind

universal translator pattern

human communication

physical dimensions

human thinking

structure for states and logic

double-hierarchy knowledge

Figure 1.2: Constructive Development

principles, such as Patterns. This worked out well until the point at which the complexity

of the software could not be handled easily anymore and new ideas were demanded.

It was only when state-of-the-art concepts got more and more unsatisfying and insufficient to

maintain a clear architecture, that new ones had to be found. After some time of reflexion,

the principles of human thinking for abstracting the real world in artificial models could be

identified as source of new ideas for software design. Further ideas were later taken over

from other phenomenons of nature and various scientific disciplines. The obvious similarities

between human- and computer systems (information input, -storage, -processing, -output)

should be rationale enough for an inter-disciplinary approach.

The concepts resulting from both, traditional and new ideas, got finally merged and de-

veloped towards the CYBOP theory (figure 1.3). For this new kind of programming, the

distinction of Statics and Dynamics, a special Knowledge Schema and the separation of

State and Logic are necessary. Chapter 5 will define these in greater detail.

This work reports about the progress of finding new ideas for software design. However,

since problems did not occur in a predictable way, while developing the mentioned applica-

tion, their presentation in order of appearance would be rather confusing. A systematised

structure of sections is therefore used in this work to organise most problems after the pro-

gramming paradigm they belong to. For the interested reader, chapter 11 describes the

1.6 Example 7

structure

procedure

class

inheritance

traditional

programming

new

concept

ideas

scientific

disciplines

statics & dynamics

knowledge schema

state & logic

cybop

+/-+/-

structure

procedure

class

inheritance

traditional

programming

new

concept

ideas

scientific

disciplines

Figure 1.3: Merger of traditional and new Concepts

stepwise construction and taken design decisions of the prototype anyway.

1.6 Example

In the course of this work, most different solutions, frameworks and models have been

developed, which is why it turns out to be rather difficult to deliver a continuous example

here.

Some traditional concepts and many new ideas of this work are demonstrated on examples

taken from a Medical Information System environment, with focus on the Electronic Health

Record (EHR). This counts for the theoretical models of the first and second part as well

as for the practical examples in part III. Many other examples and models, though, were

picked arbitrarily, depending on their adequacy for demonstrating a corresponding concept

or idea.

The actual application of the CYBOP concepts is described in chapter 11 where a prototype

software project called Res Medicinae gets introduced. It is to validate the new concepts

and to give the proof of their operability.

8 1 Introduction

1.7 Structure

This document is divided into fourteen chapters. Neglecting this introduction, thirteen

chapters remain which are organised in four parts. They are illustrated in figure 1.4.

basicsbasics contributioncontribution proofproof completioncompletion

physical

architecture

logical

architecture

extended

motivation

software

engineering

process

cybol

cyboi

res

medicinae

statics

&

dynamics

state

&

logic

knowledge

schema

review

summary

&

future

appendices

Figure 1.4: Document Structure

Part I considers basic concepts of software development (State of the Art), before the then

following part II contributes new concept ideas. Practical proof of their operability is given

in part III. And part IV finally completes the work with a review, summary and outlook

into the future.

Software Engineering Processes (SEP) (chapter 2) have to be briefly described to be able

to estimate the effects of abstraction changes on the actual SEP phases. The Physical

Architecture (chapter 3) of a standard Information Technology (IT) environment is neces-

sary background knowledge for later reflections on the design of software systems and their

communication paradigms. Finally, the Logical Architecture (chapter 4), that is conceptual

solutions for structuring software systems, is investigated, to later be able to possibly find

Pros and Cons.

A short Recapitulation of introduced state-of-the-art concepts and the idea of an inter-

disciplinary, cybernetics-oriented approach lead to an Extended Motivation (chapter 5)

whose results and solutions are described in the remaining parts of the work.

1.7 Structure 9

A first description focuses on the distinction of Statics and Dynamics (chapter 6). In a

second step, a new kind of Knowledge Schema gets introduced (chapter 7). Thirdly, State

and Logic are described as to-be-separated knowledge models (chapter 8).

The application of the merged traditional and new design concepts results in the XML-

based Cybernetics Oriented Language (CYBOL) (chapter 9). A corresponding Cybernetics

Oriented Interpreter (CYBOI) (chapter 10) is needed to execute systems defined in that

language. The Res Medicinae prototype application (chapter 11) is written in CYBOL and

executed by CYBOI.

One might argue that chapters 9 (CYBOL) and 10 (CYBOI) should rather belong to part

II, called Contribution, since they contain newly developed technologies. However, as they

were needed for the practical proof, and in order to keep the chapter symmetry, they were

placed in part III, called Proof.

After a Review validating and evaluating the CYBOP programming philosophy in compar-

ison to the original motivation (chapter 12), a Summary and recommendations for Future

research are given (chapter 13). The Appendices (chapter 14) contain used abbreviations,

references to literature and the usual lists of figures and tables. A glossary was omitted

since this document does not want to be a lexicon. All terms are explained at their first ap-

pearance in the text. A short history of thoughts that lead to the creation of this document

and recommendations for a migration to CYBOL as well as some licences in full text follow.

Caution! The page numbers behind an index entry at the end of this document refer to the

Beginning of the section in which the entry appeared.

Part I

Basics

2 Software Engineering Process

The Way is the Aim.

Confucius

Software does not only contain and process information, it is information itself. Its creation,

existence, growing old and death are called Lifecycle. Software stands at the end of a

sequence of abstractions which is often called a Software Engineering Process (SEP). Besides

the single steps of work and methodology to follow, a SEP often specifies the tools to be

used and the roles of people involved [14]. Software development history has shown plenty

of different forms of such processes, but most can be categorised into one of the following:

- Waterfall Process

- Iterative Process

- Agile Software Development

- Extreme Programming

This work is not exactly about software engineering processes, nor does it want to introduce

yet another one. Its main purpose is to deal with the results of a SEP’s phases: Abstractions.

Three forms of abstraction are common to most processes:

- Requirements Analysis Document

- Architecture Design Diagrams

- Implementation Source Code

In order to have a common base of understanding and to be able to estimate the effects

of abstraction changes on the actual software development phases, it is necessary to briefly

describe some processes, which is done in the following sections.

14 2 Software Engineering Process

2.1 Waterfall Process

The Waterfall Process (figure 2.1) is the classical way to develop a product. It assumes that

the requirements are clear and do not change during a project. Waterfall software develop-

ment is pretty straightforward and usually consists of the sequenced phases Requirements,

Analysis, Design, Implementation (Realisation, Coding), Test and Integration (Release).

analysis

design

implementation

test

Figure 2.1: Waterfall Process with Back Flow

Numerous variations of waterfall processes exist. The simplest ones deliver their product at

once, at the end of the project, what is often called Big Bang Delivery [205]. Others integrate

some kind of Back Flow [302] that allows to consider test results in further development.

One example that has combined software development- and testing activities is the V-Modell

97 [147] (figure 2.2). Its name stands for its shape: the left-hand (downhill) side of the V

represents the development; the right-hand (uphill) side represents the corresponding test

activities.

2.2 Iterative Process

An Iterative Process (figure 2.3) contains phases as known from the waterfall process, sup-

plemented by the new idea of a Reentrant Structure (Feedback Loop). All phases are gone

2.2 Iterative Process 15

unit

implementation

integration

acceptanceanalysis

architecture

design

test

uphill

develop

downhill

Figure 2.2: V-Model

through repeatedly, as long as the product is not satisfying. Whenever new requirements

show up, also after completion, new features can be added to the system by reiterating a

new project cycle.

Also here, many variations exist. They are called incremental, evolutionary, staged, spiral

or whirlpool, or similarly. In the end, they all have their roots in some kind of Iteration

which should frequently produce working versions of the final system that have a subset of

the required features, as Fowler [98] writes.

A famous representative is the Rational Unified Process (RUP) [181]. Developed by Philippe

Kruchten, Ivar Jacobson and others, RUP is the process complement to the Unified Modeling

Language (UML). Its strength of being a process framework that can accommodate a wide

variety of processes is its weakness, at the same time. Fowler [98] criticises this as follows:

As a result of this process framework mentality, RUP can be used in a very

traditional waterfall style or in an agile manner (explained in section 2.3). So

as a result you can use RUP as an agile process, or as a heavyweight process –

it all depends on how you tailor it in your environment.

16 2 Software Engineering Process

requirements

analysis

designimplementation

test

integration

Figure 2.3: Iterative Process

2.3 Agile Methodologies

The principles of Agile Methodologies (figure 2.4) are applied by a group of so-called lightweight,

adaptive software development processes with few bureaucracy, less predictability, less process-

and document-orientation, but more emphasis on people and their skills, and on source code

– which is considered the key part of documentation.

Besides Extreme Programming (XP) and Open Source Software (OSS) development, both

described in section 2.4, there are several other methodologies that fit under the Agile banner.

Fowler explains some of them in [98], which contains Alistair Cockburn’s Crystal Family, Jim

Highsmith’s Adaptive Software Development (ASD), Scrum, Feature Driven Development

(FDD) by Jeff De Luca and Peter Coad, the Dynamic System Development Method (DSDM)

specified by a consortium of British companies and some remarks on Context Driven Testing.

For the purpose of this paper, further investigation on details of the mentioned methodologies

is not needed. The general principles of agile software development (manifesto) are the

important part to recognise, because they suggest a different, more agile approach to software

engineering. Although many techniques of agile methodologies had been known and used

for long, at least in OSS development, they had not been investigated, documented and

promoted for business use in this form before. This is the great achievement of the Agile

Alliance [4].

2.4 Extreme Programming 17

individuals and interaction over processes and tools

agile methodology manifesto

working software over comprehensive documentation

customer collaboration over contract negotiation

responding to change over following a plan

while there is value in the items on the right,

those on the left are valued more

Figure 2.4: Agile Manifesto

2.4 Extreme Programming

Extreme Programming (XP) uses the idea of an iterative structure as explained in section

2.2, with the difference that it contains not only one but many cycles to assure sufficient

feedback. The whole process can be cascaded and split into more fine-grained processes,

for example Iteration, Development and Collective Code Ownership. Figure 2.5 shows a

strongly simplified view of the XP methodology, with emphasis on its nested structure and

multiple iterations. Better and more detailed overviews are given in [340].

In some way or the other, the classical process phases as first mentioned in section 2.1

also appear in XP, although they may have different names or a modified meaning. The

requirements document, for example, is replaced by so-called User Stories, which are similar

to usage scenarios (except that they are not limited to describing a user interface), but not

to be mixed up with use cases [340]. Also, a number of new phases like Release Planning

appear and more fine-granular activities like Learn and Communicate or Stand Up Meeting

are added. The basis and starting point of each XP project are four common values:

- Communication

- Feedback

- Simplicity

18 2 Software Engineering Process

extreme programming

iteration

development

communication

courage

simplicity

feedback

4 values

collective code ownership

Figure 2.5: Extreme Programming (strongly simplified)

- Courage

The last decade has shown several pushes and increasingly greater support for Free and

Open Source Software (FOSS) [242]. What makes this software so successful, besides the

fact that its source code is open and freely available, is its astonishingly fast development

model. Well, there surely are as many different development methodologies as there are

FOSS projects out there, but many of them would probably, at least partly, match into XP.

Additionally, however, there are a few significant differences that characterise Open Source

Development. Among them are [98]:

- Collaboration between physically distributed teams

- Maintainer responsible for overall coordination and design

- Highly parallelisable debugging

In his book The Cathedral and the Bazar [271], Eric S. Raymond provides further insights.

Popular slogans taken from it are: Release early and often!, Delegate everything you can! or:

Be open to the point of promiscuity! He recommends to foster a community of developers,

lead by Doing and Good Humour. Yet Tim Churches reminds people not to take Raymond’s

recommendations as dogma [168]:

2.5 Method Maturity 19

Although Eric S. Raymond’s . . . essay brought one particular FOSS develop-

ment paradigm to a lot of people’s attention, it may have also done the FOSS

movement a disservice by making people think that the ’bazaar’ approach is

the only way in which FOSS can be developed.

Instead, each project should pick a methodology that best suits its needs, may it be

cathedral- or bazaar-like.

2.5 Method Maturity

Numerous research efforts try to find the ideal software development paradigm and many

academic papers were written on the topic. In order to be able to compare the resulting

methodologies, a couple of which were described in the previous sections, some kind of

measure is needed.

The Capability Maturity Model for Software (SW-CMM) [248] is such a measure. The

newer CMM version is called Capability Maturity Model Integration (CMMI). Intended to

help organisations improve the maturity of their software processes, it describes underlying

principles and practices in terms of an evolutionary path [45]. The CMM is organised into

five levels describing a software process’ maturity:

1. Initial: ad hoc, occasionally even chaotic, scarcely defined

2. Repeatable: established discipline for repetition of earlier successes

3. Defined: documented, standardised activities for organisation

4. Managed: detailed quality measures, quantitative understanding

5. Optimising: continuous improvement through feedback

Two examples using the CMM for process evaluation are described in [284] which considers

the V-Model and in [247] which investigates XP.

2.6 Abstraction Gaps

Software has to be developed in a creative process (methodology) called Software Engineer-

ing Process (SEP). As the previous sections tried to show, many different forms of such

processes exist. Every project, consciously or not, follows a SEP that sooner-or-later, in one

20 2 Software Engineering Process

form or the other, goes through the three common phases Analysis, Design and Implemen-

tation (figure 2.6). Each phase creates its own (ideally equivalent) model of what is to be

abstracted in software and it is the differences in exactly these models that often, actually

always cause complications.

The analysis mostly results in a Requirements Document which investigates the problem

domain and uses expert knowledge to specify the functionality of the software to be created.

This specification is mostly informal, that is an ordered collection of textual descriptions.

Sometimes, semi-formal descriptions such as tables or graphics are used additionally.

It is the aim of the design phase to deliver a clear system architecture with little redundancies

and only few interdependencies, which it may specify by help of semi-formal Diagrams.

Recent years showed an increased use of the Unified Modeling Language (UML), a collection

of diagram specifications for representing static or dynamic aspects of a system. Normally,

a top-down approach is chosen for the design of a system. Hereby, the overall architecture is

considered first, before moving into details. The less common bottom-up design would start

the other way round and first try to build small components to construct the whole system

from. A third possible approach, called Yo-Yo [41], would mix the two above-mentioned

kinds.

Finally, implementation of a system is done formally, in (one or more) programming lan-

guages. The retrieved Source Code represents the temporally final abstraction, the software

that was to be built.

It is obvious that at least two gaps (figure 2.6) have to be crossed when using the described

phases:

1. Requirements Document – Architecture Diagrams

2. Architecture Diagrams – Source Code

Many efforts try to minimise the first gap by telling their analysis experts to specify use

cases, workflows and static structures using the corresponding diagrams provided by the

Unified Modeling Language (UML). Other efforts like the Feature Modelling that became

especially popular in the area of Product Line-/ System Family Engineering [30] introduce

an intermediate step of abstraction. The feature modelling itself is part of the analysis

but can logically be placed between analysis and design. The results it delivers are called

Feature Models [300, 246]. They provide hierarchical structures of the design properties of

the system to be built. By applying feature models, the former big abstraction gap is broken

2.6 Abstraction Gaps 21

software engineering process

analysis design implementation

requirements

document

architecture

diagrams

source

code

feature

model

1a 1b 2
1

Figure 2.6: Abstraction Gaps

down into two smaller ones (figure 2.6), that are easier to cross:

1a Requirements Document – Feature Model

1b Feature Model – Architecture Diagrams

2 Architecture Diagrams – Source Code

That way, the Traceability between concrete requirements and architecture components

can be improved. Moreover, the Communication between stakeholders in the development

process can profit from feature models because of their closeness to both, analysis and design.

Yet has the usage of feature models one disadvantage, too: another gap in abstraction is

created through them.

The same happens in [107], where a special knowledge level called Conceptual Ontology

Representation, comparable in its aims to the feature model, gets introduced as additional

abstraction step. The aim of becoming more independent from implementation code for

retrieving a human-readable form of knowledge, to improve communication between domain

experts and engineers may well be reached, but sooner-or-later, also these models have to be

transferred into program source code, by bridging the classical abstraction gaps mentioned

above.

Bridging or closing these abstraction gaps (sometimes called Semantic Gaps or Conceptual

22 2 Software Engineering Process

Gaps [66]) is also known as: achieving higher intentionality [66] and remains an unsolved

issue and task for software engineering. One aim of this work is to try to contribute to a

possible solution, with special focus on reducing gap 2, existing between a designed system

architecture and the implemented source code.

2.7 Software Architecture

As was shown in the previous sections, a software engineering process covers a whole spec-

trum of activities and abstractions. Several models were created to gain an overall view

on the resulting system architectures, across the single software development phases. The

so-called Architecture Views that these models provide represent a whole system from the

perspective of a related set of concerns, as [291] states. Two examples are shown following.

conceptual view

module view

code view

e
x
e
c
u
ti
o
n
 v

ie
w

Figure 2.7: Four Views Model [138]

The Four Views model (figure 2.7) proposed by [138] is best suitable for representing archi-

tectures of systems that are implemented in a procedural programming language. It contains

four different views that serve the following purposes:

- Conceptual View: describe the major design elements of a system and the relations

between them

2.7 Software Architecture 23

- Module View: represent the decomposition of a system into modules that are grouped

in layers

- Code View: organise source code into object code, libraries and binaries, and into

corresponding version files and directories

- Execution View: map software to hardware and distribute software components

user view

scenarios

logical

view

process

view

physical

view

development

view

Figure 2.8: The 4+1 View Model of Architecture [182]

Architectures of systems that are implemented in an object-oriented way are better repre-

sented by the 4+1 View model (figure 2.8), proposed by [182] and embraced as part of the

Rational Unified Process (RUP) [181]. It separates static and dynamic aspects and consists

of five different views, with the following purposes:

- Logical (Design) View: map required system functionality to architecture elements

- Development (Implementation) View: focus on the actual software module organisa-

tion

- Physical (Deployment) View: assign software elements to concrete hardware nodes

- Process View: describe dynamic runtime behavior of the executed system

- Scenarios (Use Case +1 View): collect domain knowledge, from a user’s view, and

use them to validate and unify the other four views

24 2 Software Engineering Process

Many other architecture modelling approaches like for instance the Architecture Description

Languages (ADL), some representatives of which are described in [109, 53], exist but are

outside the scope of this work and not elaborated further here, because the following two

chapters were created according to the 4+1 View Model of Architecture. Two simplifications

are made, however: The Physical- also includes the Process View (chapter 3), because

processes are considered as communicating systems running on physical machines, and the

Logical- also contains the Development View (chapter 4), because logical models represent

abstractions at different stages of software development. Scenarios are not considered since

they belong to requirements engineering whose techniques are not a topic of this work.

3 Physical Architecture

Simplicity is the Result of Maturity.

Johann Christoph Friedrich von Schiller

Software provides the functionality through which robots act and computers represent and

process information. Both are special kinds of machines which only get useful for humans

if they can be controlled and communicated with. Communication is an essential ability

for almost any kind of system. Autonomous systems exist and may well be useful, but is it

nearly always the Interaction and Cooperation that makes technical systems (from now on

called Computer in this work) so interesting and helpful to humans.

In many cases, systems are limited to one role: Client or Server. Clients ask questions

which servers answer. But both are able to send as well as to receive information. One-

way communication without any feedback is rarely useful. Besides the mentioned client-

and server-, there are other roles that a computer system can take on when talking with

so-called Communication Partners.

The following sections will stepwise build up- and briefly investigate some examples of well-

known system constellations and possible communication languages that are commonly used

in a general Information Technology (IT) environment. Because physical systems and their

interactions are considered without any knowledge about their inside, one also talks of this

as the Physical Architecture of an IT environment. Its understanding is important for later

reflections on the inner architecture of software systems (chapter 4). Also will chapter 8

come back to system communication principles and introduce a translator architecture for

universal communication.

26 3 Physical Architecture

3.1 Process

The most common word used to describe a running computer program is Process. Tanen-

baum [304] defines it as an abstract model based on two independent concepts: Resource

Grouping (space) and Execution (time).

He writes that Resource Grouping meant that a process had an address space containing

program text and data, as well as other resources. A Thread of Execution, on the other

hand, were the entity scheduled for execution on the Central Processing Unit (CPU). It had

a program counter (keeping track of which instruction to execute next), registers (holding

its current working variables) and a stack (containing the execution history, with one frame

for each procedure called but not yet returned from). Although a thread would have to

execute in some process, the thread and its process were different concepts and could be

treated separately.

A slightly different explanation is given in [159]:

A thread is the path a program takes while it runs, the steps it performs,

and the order in which it performs the steps. A thread runs code from its

starting location in an ordered, predefined sequence for a given set of inputs.

The term Thread is shorthand for Thread of Control. (One) can use multiple

threads to improve application performance by running different application

tasks simultaneously.

Abstract Concept Explanation Synonyms

Session Bundle of processes of one user

Process Group Collection of one or more processes Job

Process Container for related Resources System, Application, Task

Thread Schedulable Entity Lightweight Process

Table 3.1: Systematics of Abstract System Concepts

There are other abstract concepts which are of importance, especially in an Operating Sys-

tem (OS) context. A terminal in the Linux OS [167], for example, may control a Session

consisting of Process Groups which in turn contain many Processes providing resources for

the threads running in them. Table 3.1 shows one possible systematics of these concepts.

Some ambiguities exist, however. The term Job which, some decades ago, still stood for a

program or set of programs, is nowadays used to label a process group in Windows 2000

3.2 Application Server 27

[304, p. 7, 796] and similarly in Linux [167, p. 125, 237]. The notion of a Task is sometimes

used equivalent to thread [67], but other times refers to a process or even process group

[167, p. 113]. Additionally, some sources use the term in the meaning of a signal or event

belonging to a work queue called Task Farm or Task Bag [305, p. 548, 606].

This document uses the more general word System to write about a process that manages

the input, storage, processing and output of data in a computer. This is contrary to some

other works which mean a whole computer, including its hardware and software programs

running on it, when talking about systems. In the understanding of this work, once again,

a System is a Process (software system) running on a Computer (hardware system).

3.2 Application Server

One well-known system, nowadays, is the Application Server. The name implies that this

system is to serve other systems, so-called Presentation Clients (section 3.4). It may be

programmed in languages like Java, Python, Smalltalk, C++, C or others more.

On the other hand, there are systems running all by themselves, without any access to/

from another system – so-called Standalone Systems. In reality, they hardly exist since

most applications run in a surrounding Operating System (OS) and are thus not really

alone. An OS may be called standalone but mostly, even that consists of a number of sub

processes solving background tasks. That is why the name standalone is used when one

wants to place emphasis on the system itself, neglecting its communication with others.

Many kinds of application servers exist. Multiple services are offered by them, for example

storage or persistence handling but also application- and domain specific functionality. A

healthcare environment, as example, may contain several servers, each fulfilling one task

such as person identification, resource access decision, image access and so on – just like

people in real life have abilities and professions.

Systems of an IT environment are structured into so-called Layers, another name for which

is Tier. The application server alone represents a 1 Tier environment. The more systems of

different type (presentation client, application server, database server) are added to an envi-

ronment, the more tiers are added. For that reason, distributed client-server environments

are called n Tier.

When people talk about a Server, they very often mean a Computer on which a Server

Process is running. This is neither completely wrong nor absolutely correct. A computer

28 3 Physical Architecture

can run many different processes, only some of which may be servers. Hence, the computer

can act as Server but also as Client, at the same time.

3.3 Database Server

Another popular kind of server system, besides the application server, is the Database Server,

also called Database Management System (DBMS). It manages structured data called a

Database (DB) and serves clients with persistent data. The arrow in figure 3.1 points in the

direction into which the application server sends its queries to the database server, in order

to retrieve data. Example DBMS representatives are PostgreSQL, MySQL, DB2, ORACLE,

ObjectStore, POET or Versant.

database

server

jdbc

application

server

Figure 3.1: Database Server (2 Tiers)

Persistent Data are those that live longer than the system working on them. Very often, this

is domain-specific- but also configuration information. These are stored in a filesystem or

database [350]. Transient Data, on the other hand, is temporary information that a system

holds during its lifetime, to function correctly. They get destroyed together with the system

which created them.

Managing persistent data implies a number of quite complex tasks, the details of which will

not be part of this document. To these aspects of database servers belong:

3.3 Database Server 29

- Querying

- Transaction Handling

- Locking

Different types of database systems exist. The major ones are:

- Hierarchical and Network DBMS

- Relational DBMS (RDBMS)

- Object-Relational DBMS (ORDBMS)

- Object-Oriented DBMS (OODBMS)

Hierarchical DBMS were the first (electronic) databases ever used. They managed their

data in tree structures, starting each access from the root node. Network DBMS went one

step further: data could be associated at will [350, p. 128]. Relational DBMS are based

on tabular data structures which can have relations. They were the first to accomplish a

true separation between application and data. Special languages were created to define and

query such data sources: The Data Definition Language (DDL) and the Structured Query

Language (SQL). Object-Relational DBMS were to fill the semantic gap between Object-

Oriented Model (OOM) and Entity-Relationship Model (ERM) structures. Their extensions

introduced a number of user-defined data types. Object-Oriented DBMS conclusively close

the semantic gap between object-oriented applications and data. Their programming in-

terface is often integrated into a framework. The new SQL-based Object Query Language

(OQL) [350, p. 138] was created for them.

The communication between systems can be eased with special techniques. After Tanen-

baum [306], these were often called Middleware since they are placed between a higher-level

layer consisting of users and applications, and a layer underneath consisting of operating

systems. In the case of database systems, one such mechanism is the Java Database Con-

nectivity (JDBC) [121, 178]; another one the Open Database Connectivity (ODBC) [350, p.

170, 177]. They provide a common interface for many different relational databases.

Another technique are Enterprise Java Beans (EJB) and comparable mechanisms. They

represent so-called Business Objects (BO) and hence actually belong to the previous section

describing application servers. However, the containers in which EJBs live also contain

functionality for persistence- and transaction handling which is why they are mentioned

here. Further documentation can be found in the corresponding literature [119] and sources

[29, 112].

30 3 Physical Architecture

3.4 Presentation Client

A system is called Client when it uses services of a server. Most modern applications incor-

porate abilities to communicate with server systems which may run on the same computer

as the client or on a remote machine that has to be accessed over network.

presentation

client

rmi

database

server

jdbc

application

server

Figure 3.2: Presentation Client (3 Tiers)

But also clients can offer services as well as servers can use external services and such become

clients themselves. The application server in figure 3.1 becomes a client when accessing

the database system. As can be seen – Client and Server are quite arbitrary terms to

characterise systems.

Figure 3.2 illustrates the communication between a presentation client and application server

over network. Again, various mechanisms such as Remote Method Invocation (RMI), outside

the Java world rather called Remote Procedure Call (RPC), exist to ease the way two remote

systems talk with one another.

Frequently, people distinguish between Thin Client and Fat Client (the latter also called

Rich Client) [350, p. 176]. While a thin client’s task is nothing else than to display in-

formation coming from some server, a fat client also takes over part of the business data

processing which is otherwise done by the server only.

3.5 Web Client and Server 31

3.5 Web Client and Server

With the emerge of the Internet, several new kinds of services like Email, File Transfer,

Web etc. became popular. The web service allows information to be published in form of a

Web Page. Web pages can be written in markup formats like Hypertext Markup Language

(HTML) and Extensible Markup Language (XML) or, using special tags, as Java Server

Pages- (JSP) and PHP Hypertext Preprocessor- (PHP) instructions. Before being displayed,

the latter two need to be translated by a preprocessor inside the web server, into HTML.

rmi

presentation

client

database

server

jdbc

web

browser

web

server
socket

http

application

server

Figure 3.3: Web Client and Server

The principle as shown in figure 3.3 is easy: A Web Server stores web pages which can

be accessed by clients called Web Browser. Browsers extract and translate (render) the

(graphical) information given in form of a web page and display them. But they are also

able to handle actions such as keyboard input or mouse click, and send these information

back to the web server.

Moreover, browsers can locally execute small programs called Applets which were down-

loaded from the web server. Their counterpart are Servlets which are executed in multiple

threads on the web server, offering the actual services.

Web communication is based on standards like the Transfer Control Protocol/ Internet

Protocol (TCP/IP) and the Hypertext Transfer Protocol (HTTP) [303]. Section 3.11 will

32 3 Physical Architecture

systematise them together with other standards for system interconnection. The socket

mechanism may be used to connect a web server to an application server.

Many other aspects are important when talking about internet services. There is the issue of

security, there is performance, user-friendliness and many more which will not be discussed

further here, since it would exceed the frame of this work.

3.6 Local Process

Not all software systems run on physically separated computers, also called Nodes. And not

all communication happens over network. As well, one Local Process can talk to a second on

the same machine (figure 3.4). In fact, all applications have this ability, at least for talking

with the surrounding operating system.

rmi

presentation

client

database

server

jdbc

local

process

jms

web

browser

web

server
socket

http

application

server

Figure 3.4: Local Process

Sometimes, local processes are needed by the operating system itself. Those are running in

the background then which is why they are often called Daemon. Because they offer special

services, daemons are nothing else than small servers. They fulfil tasks like managing all

printing or email delivery of a system, or similar things [304, p. 74].

Very often, it is useful to let local client applications talk with each other. One part of

a document (for instance a diagram) that was created by help of a special application

3.7 Human User 33

may want to get integrated into another document (for instance a letter) which is edited

by another application. A number of mechanisms were created to solve this Inter-Process

Communication (IPC) task, for example:

- Dynamic Data Exchange (DDE) [203]

- Object Linking and Embedding (OLE/ OLE2) and ActiveX, both now based on the

Component Object Model (COM) [350, 119]

- Java Message Service (JMS) [112]

- Desktop Communication Protocol (DCOP) [81]

- Bonobo [96]

- Pipes [167, 304]

Although usually used for local communication (on the same node), some of these also

function over network. Again, this document will not discuss their inside functionality.

Plenty of books were written about that.

3.7 Human User

One system that needs special consideration is the Human User. In the first instance, it

can be seen as normal system that is able to communicate with other humans but also with

artificial software systems running on machines such as computers (figure 3.5).

At the second view, one realises that due to the difference in construction, human systems

rely on other kinds of communication signals. While network cards are usually enough for

two computers to exchange data, additional input/ output devices are needed to let human

beings and computers talk to each other. To these devices count: Keyboard, Mouse, Screen,

Printer and many more. They are made to suit the five human senses, that is to generate

and understand optical, acoustical, mechanical and similar signals.

The optical information displayed on a screen is often systematised into character-based

Textual User Interface (TUI) and window-based Graphical User Interface (GUI).

The scientific subject dealing with those issues in more detail is called Human-Computer

Interaction (HCI). One working definition given in [133] states:

34 3 Physical Architecture

mouse

guihuman

user

rmi

presentation

client

database

server

jdbc

web

browser

web

server
socket

http

application

server

local

process

jms

Figure 3.5: Human User

Human-computer interaction is a discipline concerned with the design, evalua-

tion and implementation of interactive computing systems for human use and

with the study of major phenomena surrounding them.

3.8 Peer Node

Tanenbaum and Steen [306] define a Distributed System as a collection of independent

computers that appear to its users as a single coherent system. With System referring to a

process rather than only hardware, as defined in section 3.1, it seems appropriate to rephrase

and use this for the definition of a general Distributed Computing Environment (DCE):

A distributed computing environment consists of at least two systems that work

together over a network but run on independent computer hardware (nodes).

Besides the previously mentioned client/ server (c/s) environments, so-called Peer-to-Peer

(P2P) computer networks latterly became popular. In them, nodes do not have just one role,

but act as client and server at the same time (figure 3.6), thus sharing their computing power

and bandwidth. Common P2P protocols are: Freenet, Gnutella2, BitTorrent, eDonkey,

FastTrack or Napster [60]. Many more exist.

3.9 Remote Server 35

mouse

guihuman

user

rmi

presentation

client

database

server

jdbc

local

process

jms

web

browser

web

server
socket

http

application

server

gnutella

freenet peer

node

Figure 3.6: Peer-to-Peer Node Communication

Just like nodes in a P2P network, human beings are capable of communicating both ways,

taking the role of a client or server. The organs that are needed to do so are put into

comparison with the corresponding devices of a computer system, in chapter 8.

3.9 Remote Server

Figure 3.7 introduces a Remote Server to the illustrated example environment. It may access

a database system – similarly to the already existing application server. In this example,

however, it just works on simple local files, using Streams.

Like the previously introduced kinds of systems, remote systems need to rely on a number of

standards and mechanisms, in order to be able to communicate over network. A comparison

of some of these is given in [233, 37, 144]. In the following is a list of common techniques

that were not yet mentioned before:

- Common Object Request Broker Architecture (CORBA) [234, 327, 119]

- Simple Object Access Protocol (SOAP) [331]

- Network Dynamic Data Exchange (NetDDE) [203]

- Distributed Component Object Model (DCOM/ COM+) [119]

36 3 Physical Architecture

file

remote

server

corba

soap

stream

mouse

guihuman

user

rmi

presentation

client

database

server

jdbc

local

process

jms

web

browser

web

server
socket

http

application

server

Figure 3.7: Remote Server

- KParts [81]

- Universal Network Objects (UNO) [239]

3.10 Legacy Host

Finally, there is often a need to integrate Legacy Systems, which are a special variant of

remote software systems running on computers with an older architecture. Those comput-

ers are also named Host, as in the example of figure 3.8, or Mainframe. The applications

running on them are programmed in languages like the Common Business Oriented Lan-

guage (COBOL) or Programming Language One (PL/I) [89], the latter developed as an

International Business Machines (IBM) [151] product in the mid 1960’s.

Host computers manage nearly everything an ancient information technology environment

needs. They are responsible for persistence and processing of data. Often, they contain

hierarchical databases [124] using flat files like the Virtual Storage Access Method (VSAM)

format. True clients do not exist here. Character-based terminals are the way to communi-

cate with the host which controls all interaction (including keyboard and screen), within a

Third Party Maintenance (TPM) Customer Information Control System (CICS) runtime

environment.

3.11 Systems Interconnection 37

mouse

guihuman

user

rmi

presentation

client

database

server

jdbc

local

process

jms

web

browser

web

server
socket

http

application

server

ibm

ware

database

server

legacy

host

textual

terminal

cics

local

Figure 3.8: Legacy Host

3.11 Systems Interconnection

Communication is essential to an IT environment as described before. To enable and ease

communication across different systems, special solutions have been developed and accepted

as de facto or de jure standards. One such specification is the well-known Open Systems

Interconnection (OSI) reference model, defined by the International Organization for Stan-

dardization (ISO). Numerous books [303] and documents on the web [249] describe this

model and its protocols.

Figure 3.9 organises the seven layers of the model in table form, with one row representing

one layer. The first column contains a layer’s name, the second examples of typical network

protocols and the third devices in which the protocols are used. Simple Mail Transfer

Protocol (SMTP), Telephone Network (Telnet), File Transfer Protocol (FTP), Hypertext

Transfer Protocol (HTTP) and Domain Name Service (DNS) are standard protocols used

directly in software applications and -tools. X.226 is a recommendation defining the OSI

presentation protocol. The Remote Procedure Call (RPC) and Network Basic Input/ Output

System (NetBIOS) may be sorted into the session layer. Transfer Control Protocol (TCP),

User Datagram Protocol (UDP), Transport Protocol Class 4 (TP4) and Sequence Package

Exchange (SPX) do belong to the transport layer. The Internet Protocol (IP) is used in

two versions: 4 and 6. Both of them are situated on the network level of the OSI model,

38 3 Physical Architecture

layer deviceprotocol

application gateway7 smtp, telnet, ftp, http, dns

presentation gateway6 x.226

session gateway5 rpc, netbios

transport gateway4 tcp, udp, tp4, spx

network router3 ipv4, ipv6, ipx

link bridge, switch2 ppp, slip, fr

physical repeater, hub1 ethernet, token ring, fddi

Figure 3.9: ISO OSI Reference Model

just like the Internet Packet Exchange (IPX) protocol. The link level contains the Point-

to-Point Protocol (PPP), Serial Line Internet Protocol (SLIP) and Frame Relay (FR), the

latter being a replacement for veterans like X.25. To the physical level transmitting raw

Bits finally, belong Ethernet, Token Ring and Fiber Distributed Data Interface (FDDI).

Many of the mentioned protocols may be assigned to more than just one layer. But it is not

the intention of this work to deal with such details. The overall ISO OSI model, however,

is mentioned because it is a good example of a structure whose layers represent increasing

levels of abstraction, what will later in this work be called an Ontology (chapters 4 and 7).

Also, the Health Level Seven (HL7) medical standard, which gets introduced in chapter 11,

received its name from referring to OSI’s seventh level – the application level [276].

While the ISO OSI model defines seven abstract communication layers, the popular TCP/IP

model uses solely four. Web communication as described in section 3.5 is based on it. Today,

TCP/IP has become the standard in network management systems. A majority of them

run the Universal Interactive Executive (UNIX) Operating System (OS), of which TCP/IP

is an integral part. Margarete Payer [249] writes: Although the OSI Model is affected with

various deficiencies, it is well suitable for didactic purposes. Further, she mentions that

since some time, Andrew S. Tanenbaum uses a hybrid model for structuring his standard

book on computer networks [303], which sticked to neither OSI nor TCP/IP.

3.12 Scalability 39

3.12 Scalability

The previous sections demonstrated that there are many different ways to organise a dis-

tributed information technology environment. The physical distribution of systems is often

a user requirement, either to connect different locations or to reach better performance by

sharing the work load. The degree to which a system can be distributed to different hard-

ware is often called its Scalability. Two models of scaling can be distinguished: vertical and

horizontal computing (figure 3.10), whose key characteristics are only described briefly here.

 unscaled

 tier

processor

memory

i/o

 horizontally scaled tier

processor

memory

i/o

network

 vertically scaled tier

processor

memory

i/o

processor

i/o

processorprocessor

i/o

Figure 3.10: Vertical and Horizontal Scaling

Vertical servers are large Symmetric Multiprocessing (SMP) systems with more than four

Central Processing Units (CPU) that share one common memory. One single Operating Sys-

tem (OS) instance covers the processors, the memory and input/ output (i/o) components.

Vertical servers provide high availability by building numerous Reliability, Availability, Ser-

viceability (RAS) features into the individual server, to minimise un-/planned downtime.

The alternative horizontal scaling connects many systems over network, which is often called

Clustering. A cluster contains computing nodes having one to four processors and a memory

each. The input/ output devices may belong to just one node or be shared by many. Each

node has an OS instance. Horizontal servers do not build RAS features into the individual

servers but get high RAS by replication and deployment of many servers, as Atwood [11]

writes.

40 3 Physical Architecture

Vertical System Horizontal System

Large Database Web Server

Transactional Database Firewall

Data Warehouse Proxy Server

Data Mining Directories

Application Server Application Server

High Performance Technical Computing

(HPTC) application (non-partitionable)

High Performance Technical Computing (HPTC)

application (partitionable)

Media Streaming

Extensible Markup Language (XML) Processing

Java Server Pages (JSP) Application

Secure Socket Layer (SSL)

Virtual Private Network (VPN)

Table 3.2: Vertical and Horizontal Application Types [11]

Table 3.2 states some typical applications for vertical and horizontal computing. The key

difference, that after [11] affected both, their price and performance, is the Interconnect

used with each architecture. Horizontal servers use a loosely-coupled external interconnect.

Vertical servers use a tightly-coupled internal interconnect that makes data communications

faster.

3.13 Misleading Tiers

When distinguishing human- and technical systems, three kinds of Communication (in this

respect also called Interfaces) can be identified:

- Human ↔ Human

- Human ↔ Computer

- Computer ↔ Computer

Each of these relies on different communication techniques, transport mechanisms, languages

(protocols) and so on. But the general principle after which communication works, is always

the same – no matter whether technical Computer systems or their biological prototype,

the Human Being, are considered: Information is received, stored, processed and sent. De-

3.13 Misleading Tiers 41

spite these common characteristics, today’s IT environments treat communication between

a computer system and a human being differently than that among computer systems.

presentation

client

database

server

application

server

configure

administer

read / write

read / write

read / write

interact

Figure 3.11: Universal Communication between Humans and Computers

Figure 3.11 shows a three-tier environment, as described in the previous sections: tier 1

represents the Presentation Layer (mostly scaled horizontally, using smaller servers); tier

2 stands for the Application Layer (where both, vertical and horizontal architectures are

common); tier 3 is the Database Layer (dominated by vertical servers). Typical synonyms

are, in this order: Frontend, Business Logic and Backend. The tiers (layers) serve two needs:

connect different locations and share work load, as elaborated in section 3.12. However, the

split into tiers of that kind is often misleadingly interpreted, since it raises two illusions:

1. Users only interact with clients in the presentation layer: Indeed, that layer was es-

pecially introduced for end-user communication but – systems of the other layers need

to be controlled as well, by humans! Databases have to be administered; application

servers configured.

2. Persistent data are only stored in databases: The majority of systems relies on some

kind of locally available, persistent data. Even database management systems them-

selves use configuration files, for example.

Many IT architectures, or at least their illustrations, neglect the fact that in reality all

systems need a User Interface (UI) and almost all systems store some of their persistent data

42 3 Physical Architecture

outside a database. This is not necessarily a problem for the physical IT environment as such,

but it is for the internal architecture of software systems. Special solutions have to deal with

frontend (UI framework), business logic (domain patterns) and backend (data mapping).

Additionally, most modern systems contain several mechanisms that permit to communicate

with other – local or remote – systems. The serious differences in these design solutions are

one root of well-known problems like multi-directional inter-dependencies between system

parts, that make software difficult to develop and hard to maintain.

One aim of this work is to investigate possibilities for a unification of communication

paradigms, that is high-level design paradigms (like patterns) rather than low-level pro-

tocols, in order to architect software in a way that allows the computer systems it runs on

to communicate universally. The following chapter therefore inspects the inner structure,

also called Logical Architecture, of software systems as well as state-of-the-art techniques for

its development.

4 Logical Architecture

Because nothing is more difficult and

nothing requires more Personality,

than to be in open Opposition to current Time

and loudly to say: NO.

Kurt Tucholsky

While the previous chapter had a look at the Physical Architecture of an IT environment,

that is the systems and their communication, this chapter will discuss the Logical Architec-

ture, that is the Inside of a software system.

The program source code of every system is – or at least should be – separated into logi-

cal parts like Layers, for example (figure 4.1). Current systems distinguish Presentation-,

Domain- and Data Source layer [101]. Each of them contains functionality for a specific

task: the presentation layer for user interaction; the domain for business logic; the data

source for database communication.

Just like physical tiers can be scaled vertically and horizontally, the logical layers within a

software system can be shared in a similar way. Figure 4.1 splits the horizontal business

logic layer of a healthcare environment into the vertical domains Documentation, Laboratory,

Reporting, Billing, Administration, Imaging, Devices.

One must not mix logical layers with the physical tiers that were introduced in chapter 3! It

is true, logical layers may be distributed to physically separated systems – the presentation

layer, for example, may be situated on the physical client tier (frontend). But as section

3.13 pointed out: In the end, all systems (not only the client tier) will have to interact with

users and further systems in some way and thus cannot only implement one functionality

but need to be able to communicate universally. More on that in part II.

44 4 Logical Architecture

system

domain logic

presentation

data source

d
o
c
u
m

e
n
ta

ti
o
n

la
b
o
ra

to
ry

re
p
o
rt

in
g

b
ill

in
g

a
d
m

in
is

tr
a
ti
o
n

im
a
g
in

g

d
e
v
ic

e
s

Figure 4.1: System with Logical Layers

Layers are just one concept aiming to improve a system’s architecture. There are many

more. The introduction of Object Oriented Programming (OOP) and the Unified Modeling

Language (UML), for example, animated and enabled software developers to structure their

program code more and more clearly. Patterns, Frameworks, Components and Ontologies

are further techniques which delivered many new concepts and solutions. They all represent

the state-of-the-art in software design and will be investigated together with their Pros and

Cons in the following sections. The most general concepts, however, are still provided by

computer languages and programming paradigms, which is why they are described first.

Over the years, several terms and synonyms describing architectural elements were intro-

duced. Following are some examples, grouped arbitrarily into those that represent a kind

of State and others that manipulate states according to certain rules of Logic. Both will

be called Statics, later in this work (parts II and III). Besides these, there are terms for

elements that describe the runtime behaviour of a system – its Dynamics, and others for

some Structural elements. They all appear in one form or another in the following sections.

- Statics:

- State: Operand, Data, Value, Parameter, Attribute

- Logic: Operation, Operator, Function, Procedure, Method, Algorithm, Activity,

Workflow

4.1 Paradigm and Language 45

- Dynamics: Allocated Memory, Array, Instance, Object, Property, Process, Signal,

Event, Action

- Structure: Class, Component, Module, Library, Package, Layer

4.1 Paradigm and Language

Manifold instructions exist that allow humans to program a computer. A set of such in-

structions is called Programming Language and is one of many groups of different Computer

Languages. Other groups are for example Markup Languages, Data Manipulation Languages

(DML), Page Description Languages or Specification Languages [60].

4.1.1 Language History

Just as a software engineering school advocates its very own Methodology (chapter 2), each

programming language advocates a special Programming Paradigm [60] (sometimes also

more than one). Some efforts categorise languages or their paradigms historically [297]. Eric

Levenez’ Computer Languages Timeline [193] captures common programming languages

from a historical perspective. Some of them are shown in the simplified figure 4.2 (whose

columns have no meaning). A much more comprehensive overview listing more than 2500

languages is given in the Language List [176] of Bill Kinnersley.

A lineage can be identified for every language, some popular of which are shown in the

following list, the corresponding language name mentioned at first, being followed by the

names of the language’s ancestors. The right-most language represents the oldest ancestor.

Only one lineage of arbitrary choice is considered for each language; most languages have

further ancestors that are not mentioned here:

- Java 2: Java 1, Oak, Cedar, Mesa, Algol, IAL, Fortran

- C#: C++, C with Classes, C, B, BCPL, CPL, Algol

- VB.NET: Visual Basic, MS Basic, Basic, Algol

- Delphi: Object Pascal, Pascal, Algol

- Oberon: Modula, Pascal

- Self: Smalltalk, Simula, Algol

46 4 Logical Architecture

1
9
5

0
1

9
6

0
1

9
7

0
1

9
8

0
1

9
9

0
2

0
0

0

OO COBOL

Java

Pascal

Fortran

COBOL

Smalltalk

MS Basic

PostScript

CPLBasic

MUMPS

Prolog

Modula

Perl

Eiffel

Ruby

Oak

Tcl/Tk

PHP

Haskell

C#

Delphi

O Caml

Algol

Simula

Ada

Sather

Machine Language

Assembler

Lisp

Snobol

JOVIALAPL

CORAL PL/I

ISWIMBCPL

B LogoForth

IconshC

MLCLU Scheme

Mesa

SASL

Rexsedawk csh

B KRCCedar

SMLCommonLisp

nawk

MirandaC w Classes

C++ObjectiveC Concurrent C

ObjectPascal

Caml

Sharp APL

Object LogoOO Forth

Oberon Self

bash ClosANSI CJ

Python Visual Basic NetRexx

Cmm MA+

JavaScript

Objectv CamlK

Open M

JScript ECMAScript

Java 2

ksh

ABC

Figure 4.2: Programming Language History

- Tcl/Tk: Tcl

- Python: ABC, B

- Perl: nawk, awk, Icon, Snobol

- PHP: PHP/FI, Perl

- Ruby: CLU, Pascal

- Haskell: Miranda, KRC, SASL, ISWIM

- O Caml: Objective Caml, Caml, SML, ML

- OO COBOL: COBOL, Flow-Matic, B-O

- NetRexx: Object Rexx, Rexx, Rex, PL/1 ANS, PL/M, PL/I, COBOL

- Open M: M, MUMPS

- Scheme: Common Lisp, Lisp

- PostScript: OO Forth, Forth

Other historical approaches assign each programming language to a special Generation.

Commonly used programming language generations and some of their representatives are

shown following [60]:

- First Generation Language: machine-level language

4.1 Paradigm and Language 47

- Second Generation Language: assembly language

- Third Generation Language (3GL): Fortran, Algol, COBOL, Basic, C, C++

- Fourth Generation Language (4GL): SQL, Mathematica, SAS, VB, MATLAB

- Fifth Generation Language: Prolog, OPS5, Mercury

4.1.2 Paradigm Overview

Several other systematics, besides the historical one shown in the previous section, exist

to categorise programming languages and their paradigms. Some authors, for example,

divide computer languages into those that have to be compiled before being executed and

those which are interpreted at runtime. Figure 4.3 shows yet another arbitrary, tree-like

systematics that was assembled on the basis of [60] and [176].

paradigm/

language

imperative
declarative/

descriptive

functional/

applicative
logical

unstructuredstructured markup
data

manipulation

monolithic procedural

Figure 4.3: Programming Paradigm Systematics

Machine- and Assembly Language as well as System Programming are imperative (command-

oriented). Functional- and Logical Programming, on the other hand, are declarative, just

as most Scripting Languages used for Typeless Programming. The boundaries tend to be

vague, however. Many of the new languages borrow features from more than one program-

ming paradigm. Similarly, the concepts of Structured and Procedural Programming (SPP)

48 4 Logical Architecture

and Object Oriented Programming (OOP) are not only used in system programming-, but

also in scripting languages.

It is important to note that it is extremely difficult, if not impossible, to arrange all pro-

gramming languages into just one tree of categories. Kinnersley [176] writes that for every

classification scheme there will be a large proportion of languages that do not fit . . . most

languages are not purely one or the other. The Logo language, for example, is an adaptation

of the functional language Lisp, that is non-imperative, yet procedural [60]. Figure 4.3 can

therefore only be seen as trial to create a systematics of the most common programming

paradigms. In order to avoid miscategorisation, the Wikipedia Encyclopedia [60] prefers to

list programming paradigms as contrasting pairs, for example:

- Procedural vs. Functional

- Imperative vs. Declarative

- Structured vs. Unstructured

- Value-level vs. Function-level

- Flow-driven vs. Event-driven

- Scalar vs. Array

- Class-based vs. Prototype-based

- Rule-based vs. Constraint

Not all items of the list are explained in this work since this would break its frame and

focus. However, some of the most important programming language concepts in use today

are described in the following sections.

4.1.3 Hardware Architecture

In his very clear book, Tanenbaum [305] organises instructions in abstract Levels (figure 4.4),

which he also calls Virtual Machines (VM), since each level could be seen as hypothetic

computer with an own language. Further on, he considers hardware and software to be

logically equivalent because one could replace the other.

The next sub sections are based on this structure. They describe lower levels, close to

hardware. Later sections then place more emphasis on concepts introduced by higher-level

Problem Oriented Languages (POL).

4.1 Paradigm and Language 49

problem oriented language

translationcompiler

assembly language

translationassembler

operating system machine

partial interpretationoperating system

instruction set architecture

interpretation or direct executionmicroprogram / microarchitecture

hardware functionality

micro architecture

gate, memory, register

digital logic

transistor hardware functionality

analogue device

electron hardware functionality

solid state physics

Figure 4.4: Computer Structure (adapted from [305])

Digital Logic

As mentioned in chapter 1, it is Abstractions that enable humans to capture the surrounding

real world in a simplified way. All information is abstract. Software is information and the

data it processes are information, too.

With the emerge of Digital Computers, Digital Logic gained more importance and the new

field of science Informatics was born whose job in essence is to break down (abstract) every

piece of information to just two states: 0 and 1, represented by one Binary Digit (Bit).

This is accomplished through the use of digital electronic components called Gate which

transfer one or more input signals (states) into a defined output signal by applying simple

logic functions like AND or OR. Many gates can form a 1-Bit Memory that is able to store

the states 0 or 1. Memories can be grouped so to form Registers [130] which are able to

store one or many Bits.

Internally, gates consist of analogue electronic devices like Transistors, the functionality of

which is out of the scope of this document. Any other details of what is going on inside

analogue electronic components belong to the field of Solid State Physics.

One might ask why exactly 0 and 1 and no other states (for example 0.1, 0.2 etc.) between

them were chosen. The answer needs some background information. When talking about a

50 4 Logical Architecture

Signal in hardware computer science, people mean electric voltage. Zero and One correspond

to Low and High voltage in electronic circuits. These minimum and maximum values of

voltage are reached in rarest cases – mostly, the voltage lies somewhere between. This is

due to environmental influences called Noise which pollute a signal (voltage). Therefore,

each signal has to be interpreted as being rather high or low. The better the Signal to Noise

Ratio (SNR), the more exact this interpretation can be.

With only two possible states, interpretation failures are very rare and digital technique has

already proven to be quite error-tolerant. How much more difficult would it be to guess a

signal’s state if there were four, ten or more! That is why breaking down all information to

only High and Low (also labeled True and False or On and Off) provides the most reliable

abstraction.

There are efforts to develop Quantum Computers that use Qubits to measure data. While a

traditional Bit represents just one state, that is either zero or one, a Qubit can hold a zero,

or a one, or a superposition of these and represent more than one state, at one time instant.

Qubits can be implemented using elementary particles with two spin states, for example

represented by Quarks. Quantum computers are believed to solve certain problems faster

than any classical computer [60]. However, this is the future of computing and not part of

this work.

Micro Architecture

The Micro Architecture level contains a number of memories and the so called Arithmetic

Logic Unit (ALU) which is an Integrated Circuit (IC) that is able to execute simple arith-

metic operations. The arithmetic logic unit and registers exchange data across the Data

Path. The data path is controlled either directly by hardware or by a special Micro Pro-

gram which interprets instructions from the next higher Instruction Set Architecture (ISA)

level.

Instruction Set Architecture

The Instruction Set Architecture (ISA) essentially summarises the instructions that can

be carried out by the micro architecture hardware (or interpreted by its micro program

software). Computer manufacturers usually publish a handbook describing the whole set of

instructions.

4.1 Paradigm and Language 51

4.1.4 Machine Language

The new features in this level (for example memory organisation or parallel execution of

programs) are normally provided by an interpreter program that is running on the lower

instruction set architecture level. This is the Operating System (OS).

Instructions which are identical to those of the instruction set architecture, however, are

executed directly by the yet lower micro architecture/ micro program level, and not by the

operating system. Therefore, the Machine Language level is also called hybrid.

4.1.5 Assembly Language

Languages of the layers described to here are numeric. That is, programs written in them

consist of long numerical series adapted to what a machine expects. Starting with the

level of Assembly Language, programs contain special Keywords, symbols and abbreviations

which are meaningful to humans. While programs of the former levels are written by System

Programmers, it is Application Programmers who use assembly- and higher-level languages

to write a program.

Instructions of lower levels are always interpreted. The corresponding program is called In-

terpreter. It is running on the level below the one the instructions stem from. An interpreter

executes an instruction directly, without generating a translated program. Higher-level lan-

guages, on the other hand, get translated into lower-level instructions before being executed.

Such translator programs are called Assembler or Compiler. New forms of programs (like

those written in Java) also use a combination of both, being first compiled into a special

byte code and then interpreted at runtime.

4.1.6 Structured- and Procedural Programming

Computer history has produced a whole plethora of high-level languages (an overview is given

in section 4.1.1). They are to ease the programming of applications which solve problems

of an arbitrary domain. Nearly all of them make use of a number of techniques that stem

from the so-called Structured- and Procedural Programming (SPP).

These techniques arise from firstly the reduction of Control Structures to a minimal set

of elements which can be combined arbitrarily in Sequenced Steps. Secondly, repeating

algorithms can be defined as Procedure and called as subroutine. That way, wild Jumps

52 4 Logical Architecture

from one part of a program to another are avoided. A procedure can also call itself which is

known as Recursion [250].

It is possible to hierarchically modularise all control structures, with each structure having

a defined Entrance and Exit. When procedures are grouped together in a separate file, then

this file is often called Module or Library. Modules can contribute greatly to the reuse and

creation of clear program code.

Two kinds of diagrams are typically used to describe a (part of a) procedural program

semi-formally: Program Flow Chart and Structure Chart. Both representations are based

on sequences of control structures. The former differs from the latter in the existence and

appearance of certain graphical elements; GoTo instructions, for example, do not exist in

structure charts.

Following is a brief description of the most important control elements of SPP, given in

form of both, diagrams [280] and C program code [309]. These basic control techniques are:

Assignment, Branching and Looping.

Assignment

A Statement (figure 4.5) is a sequence of operators and operands [106], to be evaluated

(executed) by (the next lower abstraction level of) a computer. It is also called an Expression.

The Operator represents the actual Operation, an active instruction to the computer. It uses

and works on passive data – the Operands, also called Variables. Following a statement in

C code:

operand++;

A Variable is a placeholder for an abstracted Data Value. It occupies space in memory

which is why this space has to be reserved before it can be used. The reservation is called

Allocation or Declaration and it states the variable’s Type and an Identifier. Commonly,

variables also get initialised through the Assignment of an Initial Value. Here an example

for declaration and initialisation through assignment in C code:

type identifier = value;

Many statements which belong together can form a Block, also called Compound Statement.

Variables declared in a block are called its Local Variables and loose their validity outside

4.1 Paradigm and Language 53

operand++operand++

Figure 4.5: Statement as Program Flow Chart and Structure Chart

that block. Blocks have an opening and a closing symbol. Following once more an example

in C programming language source code, showing a block with two statements:

{

statement1;

statement2;

}

Branching

A block of statements that get only executed at special occasions is called a Branch. Two

kinds of branching exist: Conditional Branching and Unconditional Branching. An im-

plementation of the latter is the well-known but also disliked goto (jump) command. The

former depends on a Condition, also called Alternative or Choice (figure 4.6), that is its

statements are only executed if the condition’s result is true. That way, a condition can

change the flow of a program. A code example follows; it shows conditional branching:

if (condition) {

statements;

} else {

statements;

}

54 4 Logical Architecture

true

statement

condition

false

statement

condition
true

false

Figure 4.6: Condition as Program Flow Chart and Structure Chart

Many programming languages offer a Multiple Condition control structure like switch or

case. It is a comfortable possibility to let a program make a choice out of many alternatives:

switch (condition) {

case constant1:

statements;

case constant2:

statements;

default:

statements;

}

Essentially, however, it is a subsumption of a number of simple conditions which are mostly

called if-else, and therefore replaceable by such, as shown following:

if (condition == constant1) {

statements;

} else if (condition == constant2) {

statements;

} else {

statements;

}

4.1 Paradigm and Language 55

The multiple condition is conceptually no innovation in comparison with the simple condition

and hence pure convenience for the programmer. The interpreter described in chapter 10

uses solely if-then statements.

Looping

The Loop (figure 4.7) is a control element that allows to iterate through statements, in

other words to execute them repeatedly, several times. Its concept is quite simple – a

jump backwards in the program. However, this low-level jump is hidden to the application

programmer using a higher-level SPP language. The loop is indicated by a special keyword

instead, for example:

while (condition) {

statements;

}

statement

condition
true

false

condition

(true)
statement

Figure 4.7: Loop as Program Flow Chart and Structure Chart

Most programming languages offer three different loop styles, as there are:

- Pre-test loop: while, while-do

- Post-test loop: do-while, repeat-until

56 4 Logical Architecture

- Counting Loop: for, for-next

A Pre-Test Loop is used when one wants to check a condition before the statements in the

loop body are executed:

int i = 0;

while (i < 1) {

statements;

i++;

}

The Post-Test Loop, on the other hand, repeats all loop-body statements until a condition

is met:

int i = 0;

do {

statements;

i++;

} while (i < 1);

A Counting Loop, finally, can be applied when the number of necessary repetitions of the

loop-body statements is known in advance:

int i;

for (i = 0; i < 1; i++) {

statements;

}

The statements in all three loop examples are only executed once. It is not difficult to

see that the for loop can be replaced with a while loop by initialising the i variable in its

declaration line and moving the increment statement into the loop’s block. But also the do-

while loop can be replaced with a while loop. If the behaviour does not match (for example

a while block is not executed even once), then changing the initial loop variable value can

solve this problem. Otherwise, modifying the statements (algorithm) in the block, without

changing it logically, will do.

As can be seen: Most variations of the Looping concept are just a convenience for the

programmer. They are conceptually identical and can be lead back to a simple loop with

break condition, each. The interpreter described in chapter 10 uses just one kind of loop.

4.1 Paradigm and Language 57

4.1.7 System Programming

After John K. Ousterhout [244], System Programming Languages such as PL/1, Pascal, C

or C++ or Java (which evolved from higher level languages such as LISP, Fortran or Algol

– see section 4.1.1) had been introduced as an alternative to Assembly Languages and both

would differ in two ways. While in an assembly language, virtually every aspect of a machine

were reflected in the program, each statement representing a single machine instruction so

that programmers had to deal with low-level details such as register allocation and procedure

calling sequences, a system programming language were:

1. higher level because its statements did not correspond exactly to machine instructions;

a compiler would translate each statement in the source program into a sequence of

binary instructions and handle register allocation;

2. strongly typed because programmers needed to declare how each piece of information

would be used; the language would prevent the information from being used in any

other way.

Ousterhout uses the term Typing to: refer to the degree to which the meaning of information

is specified in advance of its use. After him, the strong typing (also called Static Typing)

of today’s system programming languages had several advantages, such as:

- Better manageability of large programs by differentiating between things that must

be treated differently

- Possible error detection by using type information in compilers

- Improved performance by allowing compilers to generate specialized code

But there were also a number of disadvantages when using system programming languages:

- Need to declare each variable with a particular type and to use it in ways that are

appropriate for the type

- Difficulty to create new code on the fly due to total segregation of data and code

- Impossibility to use an object of one type where an object of a different type is

expected, because variables are collected in objects with well-defined substructure

and procedures to manipulate them

58 4 Logical Architecture

4.1.8 Typeless Programming

Scripting Languages (formerly also called Job Control- or Batch Languages [60]) such as

Perl [334], Python [204], Rexx [232], Tcl [243], Visual Basic (VB) and the Universal Interac-

tive Executive (UNIX) shells overcome the disadvantages of system programming languages

(section 4.1.7) by being typeless and interpreted. The paradigm behind them is sometimes

called Script Oriented Programming (SOP).

Ousterhout [244] writes that modern computers were fundamentally typeless: any word in

memory could hold any kind of value, such as an integer, a floating-point number, a pointer,

or an instruction. The meaning of a value were determined by how it is used: if the program

counter pointed at a word of memory then it were treated as an instruction; if a word were

referenced by an integer add instruction then it were treated as an integer; and so on. The

same word could be used in different ways at different times (what is also called Dynamic

Typing).

Because scripting languages are intended primarily for plugging together existing compo-

nents, they are also referred to as System Integration Languages or Glue Languages. They

provide a higher level of programming than assembly- or system programming languages.

Through their usage, integrated applications, after [244], could be developed five to ten

times faster than with system programming languages. Scripting languages sacrifice execu-

tion speed to improve development speed.

The interpreter described in chapter 10 is able to handle data (knowledge) without knowing

about their type (kind of abstraction) in advance, that is at compilation time. Although

itself written in the system programming language C, the interpreter is very flexible when

it comes to processing knowledge.

4.1.9 Functional Programming

Many languages such as Lisp and its relatives cannot be characterised cleanly as system pro-

gramming language or scripting language; they are situated somewhere between. Concepts

like Interpretation and Dynamic Typing, now common in scripting languages, stem from

Lisp [244]. Others like Automatic Storage Management and Integrated Development Envi-

ronments, now used in both scripting- and system programming languages, were introduced

by Lisp as well. Peter Norvig writes in [223]:

4.1 Paradigm and Language 59

There is a myth that Lisp (and Prolog) are Special Purpose Languages (SPL),

while languages such as Pascal and C are General Purpose (GPL). Actually, just

the reverse is true. Pascal and C are special-purpose languages for manipulating

the registers and memory of a von Neumann-style computer. The majority of

their syntax is devoted to arithmetic and Boolean expressions, and while they

provide some facilities for forming data structures, they have poor mechanisms

for procedural abstraction or control abstraction. In addition, they are designed

for the state-oriented style of programming: computing a result by changing

the value of variables through assignment statements.

The Frequently Asked Questions (FAQ) edited by Graham Hutton [146] distinguish between

Imperative Languages and Functional Languages. System programming languages as intro-

duced in previous sections belong to the first group. To calculate the sum of the integers

from 1 to 10, for example, they would probably use a simple loop and repeatedly update

the values held in an accumulator variable total and a counter variable i :

int total = 0;

for (int i = 1; i <= 10; ++i) {

total += i;

}

A functional language like Haskell would express the same program without any variable

updates, by evaluating an expression, as shown below. Variable updates, that is computa-

tional effects caused by expression evaluation that persist after the evaluation is completed

[146] are called Side Effects.

sum [1..10]

The following two examples [146] show the same program in two other functional languages,

namely SML and Scheme:

let fun sum i tot = if i = 0 then tot else sum (i - 1) (tot + i)

in sum 10 0

end

(define sum

(lambda (from total)

(if (= 0 from)

total

(sum (- from 1) (+ total from)))))

60 4 Logical Architecture

(sum 10 0)

The Association of Lisp Users [227] points out the absence of side effects and explains

Functional Programming as follows:

Functional programming describes all computer operations as mathematical

functions on inputs. Typically, a function can be created and returned from

other functions as first-class data. This function object may then be passed

as input to other functions, perhaps be composed with other functions, and

eventually, applied to inputs to produce a value. Objects can be defined in

terms of functions that encapsulate certain data, and operations on objects can

be defined by functions encapsulating the objects. Purely functional languages

do not have assignment, as all side-effecting can be defined in terms of functions

that encapsulate the changed data. Procedural languages essentially perform

everything as side-effects to data structures. A purely procedural language

would have no functions, but might have subroutines of no arguments that

returned no values, and performed certain assignments and other operations

based on the data it found stored in the system.

The interpreter described in chapter 10 manipulates all data (knowledge) as if it would

be one huge side effect. Data (knowledge models) are not bundled with-, but kept com-

pletely outside any functions/ procedures. Only references to these data are handed over as

parameters.

4.1.10 Logical Programming

Functional Programming as introduced in the previous section is one kind of Declarative

Programming, which describes to the computer a set of conditions and lets the computer

figure out how to satisfy them [60]. Another kind is Logical Programming. It specifies a

set of attributes that a solution should have – rather than a set of steps to obtain such a

solution. Schematically, the logical programming process follows the equation:

facts + rules = results

Logical programming was strongly influenced by Artificial Intelligence (AI) and is applied in

domains such as Expert Systems, where the program generates a recommendation or answer

4.1 Paradigm and Language 61

from a large model of the application domain, and Automated Theorem Proving, where the

program generates novel theorems to extend some existing body of theory. [60]

The Monkey and Banana Problem is a famous example studied in the community of logical

programming [60]: Instead of the programmer explicitly specifying the path for the monkey

to reach the banana, the computer actually reasons out a possible way that the monkey

reaches the banana.

A prominent logical language representative is Prolog; a more recent one is Mercury; an

Open Source Software (OSS) one is TyRuBa.

4.1.11 Data Manipulation Language

A Data Manipulation Language (DML), after [60], is: a family of computer languages used

by computer programs or database users to retrieve, insert, delete and update data in a

database. As most popular DML, the source mentions the Structured Query Language

(SQL) that was originally developed as Structured English Query Language (SEQUEL) by

International Business Machines (IBM), after the model described by Edgar F. Codd in

[55].

Technically, SQL is a set-based, declarative computer language that, after [60], could be

used to create, modify and retrieve data from Relational Database Management Systems

(RDBMS). Its keywords are often shared into the three groups:

- Data Manipulation Language (DML): SELECT, INSERT, UPDATE, DELETE

- Data Definition Language (DDL): CREATE, DROP

- Data Control Language (DCL): GRANT, REVOKE

Since the details of that language are outside the scope of this work, they are not elaborated

further here, but can be learned at for example [282].

4.1.12 Markup Language

At latest with the distribution of the World Wide Web (WWW), Markup Languages in-

creasingly gained in popularity. A markup language separates the presentation Style of a

document from its logical Structure and Content. Well-known representatives of markup

languages, two famous of which being described in the following sections, are [60]:

62 4 Logical Architecture

- TEX / Lamport TEX (LATEX, LATEX2ε)

- Scribe

- Standard Generalized Markup Language (SGML)

- Extensible Markup Language (XML)

- Hypertext Markup Language (HTML)

- DocBook

- Text Encoding Initiative (TEI)

Recently, more and more projects appear that try to use markup languages not just for

document markup, but also for declarative programming.Before coming to the actual markup

languages, the paradigm of Literate Programming and its idea to use markup tokens for

distinguishing source code and documentation, is investigated.

Literate Programming

Ross Williams writes in [343, section 1.1]:

A traditional computer program consists of a text file containing program code.

Scattered in amongst the program code are comments which describe the vari-

ous parts of the code. In Literate Programming, the emphasis is reversed. In-

stead of writing code containing documentation, the literate programmer writes

documentation containing code.

In other words, Literate Programming pays more attention to proper source code documen-

tation than classical programming languages do. It mostly offers special Token characters

like the Commercial At character @ for example, which serve as code delimiters. The de-

limited blocks are determined by particular tools such as a preprocessor that filters out

program code to be processed further. All source information together (input document,

commentaries, program code) is used to generate typeset documentation files in one or more

formats.

Williams [343] means that the literate programming system provided far more than: just

a reversal of the priority of comments and code. In its full-blown form, a good literate

programming facility could provide:

4.1 Paradigm and Language 63

- Re-ordering of Code: Some programming languages force the programmer to give the

various program parts in a particular order.

- Typeset Code and Documentation: Because a literate programming utility sees all the

code, it can use its knowledge of the programming language and the features of the

typesetting language to typeset the program code as if it were appearing in a technical

journal.

- Cross referencing: Because a literate tool sees all the code and documentation, it is

able to generate extensive cross referencing information in the typeset documenta-

tion, which makes the printed program document more easy to navigate and partially

compensates for the lack of an automatic searching facility when reading printed doc-

umentation.

It is true, the actual instructions and algorithms in between commentaries are written in (or

translated into) a system programming- or other kind of language. But literate programming

places its focus on source code Documentation for which it uses Markup tokens, which is

why it was classified under Markup Language in this work.

Although literate programming itself has not gained that much popularity, its idea of using

markup tokens to generate more expressive source code documentation has. Several up-to-

date programming environments make use of it. A well-known example is the JavaDoc tool

[154]; other systems are Doxygen [324] or DOC++ [1].

TeX and LaTeX

The special-purpose TEX [179] language is the centre-piece of a typesetting system which, due

to its well-formatted output of complex mathematical formulas and generally high-quality

typesetting, is especially popular among academic circles of mathematicians, physicists and

computer scientists [316]. The Wikipedia encyclopedia [60] writes:

TEX is a macro and token based language: many commands, including most

user-defined ones, are expanded on the fly until only unexpandable tokens re-

main which get executed. Expansion itself is practically side-effect free. Tail

recursion of macros takes no memory, and if-then-else constructs are available.

. . .

The TEX system has precise knowledge of the sizes of all characters and symbols,

and using this information, it computes the optimal arrangement of letters per

64 4 Logical Architecture

line and lines per page. It then produces a Device Independent (DVI) file

containing the final locations of all characters. The DVI file can be printed

directly given an appropriate printer driver, or it can be converted to other

formats.

The PDFTeX translator program is often used to bypass all DVI generation, by creating

Portable Document Format (PDF) files directly.

Nowadays, TEX is mostly used with a template extension called Lamport TEX (LATEX,

LATEX2ε) [188]. The Indian TEX Users Group (TUG) writes [316]: LATEX is a document

preparation system which adds a set of functions that make the TEX language friendlier

than using the primitives provided by it. It offers programmable Desktop Publishing (DTP)

features and extensive facilities for automating most aspects of typesetting. [60]

The most important feature of TEX for this work is its kind of relating meta- with structural

information. Two examples may help here:

\documentclass[a4paper,12pt]{book}

\includegraphics[scale=0.3]{path/file.pdf}

The first statement determines book as document class for a document to be written. It

contains additional information such as paper- and font size, in square brackets. The second

statement refers to a graphics file to be included. The additional information given in square

brackets here is the scale factor. With a different syntax, but in a comparable manner, the

knowledge modelling language introduced in chapter 9 does relate structural- with meta

information.

Extensible Markup Language

A popular, very flexible, yet simple language playing an increasingly important role in the

exchange of a wide variety of data on the World Wide Web (WWW) and elsewhere is the

Extensible Markup Language (XML) [345], defined by the World Wide Web Consortium

(W3C) [330]. Being a text format derived as simplified subset (dialect) of the Standard

Generalized Markup Language (SGML) [160], it allows to structure and store information

hierarchically as Document file. Norman Walsh [335] writes:

A markup language is a mechanism to identify structures in a document. The

XML specification defines a standard way to add markup to documents.

4.1 Paradigm and Language 65

And the XML Cover Pages [142] state:

Both SGML and XML are meta languages because they are used for defining

markup languages. A markup language defined using SGML or XML has a

specific vocabulary (labels for elements and attributes) and a declared syntax

(grammar defining the hierarchy and other features).

Historically, markup languages became widely known through the Hypertext Markup Lan-

guage (HTML) as language of the Web. To overcome its limitations, XML was originally

designed to meet the challenges of large- scale electronic publishing [345]. Today, XML is

applied in many different areas, for example:

- Document Publishing [336]

- Data Transfer [331]

- GUI Design [262, 57, 292, 273]

- Workflow Composition [136, 161]

- Database Storage [210, 70]

- Domain Modelling [295, 114]

Yet in the opinion of Robin Cover [65], the usability of XML for domain modelling is limited.

He writes:

Just like its parent metalanguage (SGML), XML has no formal mechanism to

support the declaration of semantic integrity constraints, and XML processors

have no means of validating object semantics even if these are declared infor-

mally in an XML DTD. XML processors will have no inherent understanding

of document object semantics because XML (meta-)markup languages have no

predefined application-level processing semantics. XML thus formally governs

syntax only – not semantics.

In fact, XML syntax is designed for representing an encoded serialization, and

thus has a very limited range of expression for modeling complex object seman-

tics, where Semantics fundamentally means an intricate web of constrained

relationships and properties. Otherwise stated: XML is a poor language for

data modelling . . .

66 4 Logical Architecture

The XML-based language described in chapter 9 proves the opposite. By applying a common

knowledge modelling schema (chapter 7), it allows to model arbitrary meta information

(complex object semantics). Robin Cover continues [65]:

The notion of Attribute might have been more useful except that XML supports

only a flat data model for the value of an attribute in a name-value pair (essen-

tially String). This flat model cannot easily capture complex attribute notions

such as would be predicated of abstracted real world objects, where attribute

values are themselves typically represented by complex objects, either owned or

referenced.

This criticism of Cover is absolutely correct. It can be circumvented, though. The language

introduced in chapter 9 permits one attribute to store a (file) path to an external compound

knowledge template and is thus capable of representing compound properties (complex at-

tribute notions). One problem remains, however: When serialising compound knowledge

models consisting of other compound models, the quotation mark as attribute value delim-

iter is not sufficient, because the beginning and end of an attribute value may get mixed up.

Solving it, the XML standard needs to be injured (chapter 9).

4.1.13 Page Description Language

In order to be (more or less) complete in the language overview given in this work, the

Page Description Language (PDL) as further category shall be mentioned here as well.

It describes the contents and appearance (text, graphical shapes, images) of a page to be

printed in a device-independent, higher-level way than an actual output bitmap [60]. It may

therefore serve as an: interchange standard for (the) transmission and storage of printable

documents [143]. Well-known PDL representatives are:

- Device Independent (DVI) format

- Printer Control Language (PCL)

- PostScript (PS)

- Portable Document Format (PDF)

After [143], PostScript is a: full programming language, rather than a series of low-level

escape sequences. It is stack-based and interpreted. These properties made it the: language

4.1 Paradigm and Language 67

of choice for graphical output, until PDF appeared. The following PostScript code example

[60] computes (3 + 4) * (5 - 1):

3 4 add 5 1 sub mul

4.1.14 Hardware Description Language

Hardware Description Language (HDL) is an umbrella term for any computer language

formally describing Electronic Circuits, that is their design and operation, as well as tests

to verify their operation by means of Simulation [60]. HDLs used for the design of digital

circuits like Application Specific Integrated Circuits (ASIC) or Field Programmable Gate

Arrays (FPGA) include:

- Very High Speed Integrated Circuit (VHSIC) HDL (VHDL) [290, standard 1164]

- Verilog HDL [290, standard 1364-2001]

- SystemC [74]

Although being similar, HDLs are not programming languages. HDL’s syntax and seman-

tics include explicit notations for expressing time and concurrency which are the primary

attributes of hardware, as [60] writes and adds:

An HDL compiler often works in several stages, first producing a logic descrip-

tion file in a proprietary format, then converting that to a logic description

file in the industry-standard Electronic Data Interchange Format (EDIF), then

converting that to a Joint Electron Device Engineering Council (JEDEC) for-

mat file. The JEDEC file contains instructions to a Programmable Logic Device

(PLD) programmer for building logic. On the other hand, a software (program-

ming language) compiler generates instructions to a microprocessor for moving

data.

The following sections of this chapter will be about programming-, not hardware description

concepts.

68 4 Logical Architecture

4.1.15 Object Oriented Programming

With the emerge of Object Oriented (OO) languages, an additional programming paradigm

got introduced. That is, many principles such as Structured and Procedural Program-

ming (SPP) were still holding true but got extended through Object Oriented Program-

ming (OOP). Examples of OOP languages, often defined by simply extending an existing

language, are:

- Smalltalk [202]

- C++, extending the C system programming language (section 4.1.7)

- Python, as typeless programming language (section 4.1.8)

- Common Lisp Object System (CLOS), extending the Common Lisp (CL)

dialect of the Lisp functional programming language (section 4.1.9)

The following sections describe the main concepts behind OOP in brief. Although many of

them represent improvements to SPP, this work will point out their weaknesses, too. The

merger of attributes (data) and methods (operations) into one common data structure called

Class, for example, will be criticised and eliminated later in this work (chapter 8).

Code examples in the Java programming language are given as well as Unified Modeling

Language (UML) diagrams. The UML is a semi-formal, graphical description language that

offers elements for the concepts of Object Orientation (OO). To some extend, programs can

be designed, generated and documented using special applications called UML Tools.

Classification

The main idea of object oriented programming is to structure program code into Classes

owning Attributes and Methods (figure 4.8). They are comparable to the structured data

types (struct, record) of Structured and Procedural Programming (SPP) (section 4.1.6) that

can own fields representing properties, but not behaviour. A class definition in Java source

code looks like this:

public class Example {

private Type attribute;

public void method(Type parameter) {

}

}

4.1 Paradigm and Language 69

class

 - attribute : type

 + method(parameter : type) : void

Figure 4.8: Classification as UML Diagram

While procedures and many variables in SPP are global, that is only exist once, classes are

treated as types of which many Instances (also called Objects) can be created, including

attributes and methods. In OOP, such memory allocation is called Instantiation.

Two related data types are Abstract Class and Interface. An abstract class can hold at-

tributes and (partly abstract) methods. Just like interfaces, abstract classes cannot be

instantiated. An interface is yet more restricted in that it can only have constants but not

attributes and only declarations but not actual implementations of methods. Interfaces are

commonly used to [297]:

- Realise multiple inheritance (section 4.1.15)

- Encapsulate components (section 4.3.3)

- Pool common methods (section 4.3.4)

Specialities like Inner Classes [112] with limited scope of validity are of minor importance

to the argumentation of this document and not further explained here.

The Bundling of attributes and methods (state and logic) causes more system interdepen-

dencies and complications than were predictable. It is a big disadvantage that affects all

modern object-oriented systems. [125] Certainly, the bundling stems from best intentions to

receive cleaner code by keeping not only attributes but also methods in a common module,

70 4 Logical Architecture

such avoiding wild and global procedures. But now, modules not only have to refer to other

modules for accessing their state data; the same is needed for accessing their logic in form

of method calls.

With OOP, the number of cross-relations between modules, and inter-dependencies between

system layers may rise dramatically. In reality, state- and logic properties are two different

things that have to be kept in different places! Both can have a similar, hierarchical structure

but each is a concept on its own, as chapter 8 will show.

Encapsulation

One recommendation of object oriented programming is that the properties of an object

created as instance of a class be protected through special Access Methods (figure 4.9). A

Java code example can be found below. The intention is not to expose class attributes

to other classes by minimising direct access to them and such to provide some security by

preventing illegal access to an object’s interna. Therefore, this paradigm is called Encapsu-

lation or Information-/ Data Hiding. Another advantage is that if an attribute changes its

name, then only one place in the code (the access method), instead of hundreds, needs to

be updated.

public class example_class {

private Type attribute;

public void set_attribute(Type a) {

this.attribute = a;

}

public Type get_attribute() {

return this.attribute;

}

}

Special keywords are necessary to ensure proper encapsulation by making attributes and

methods visible to only certain outside objects. These keywords are: public, protected and

private. In the Java programming language [112], an additional package protection level

is applied when none of the aforementioned keywords is found. The Delphi language [337]

knows an additional published keyword that makes properties visible in its object-inspector

tool. Other languages may contain further variations of access limitations.

The recommendation to encapsulate attributes produces thousands of lines of source code

whose usefulness is at least questionnable [126]. In about 90% of cases (practical experience

4.1 Paradigm and Language 71

class

 - attribute : type

 + set_attribute(attribute : type) : void

 + get_attribute() : type

Figure 4.9: Encapsulation as UML Diagram

of the author of this document), the set and get methods consist of only one single line

accessing an attribute value which in the end is the same as accessing that attribute directly.

Sometimes, additional lines with a trigger function to update other parts of the system are

added. They get invoked whenever an attribute value of the called object is changed by a

set method:

public void set_attribute(Type a) {

this.attribute = a;

get_update_manager().update(this);

}

But, as shown below, this update notification could as well be taken over by the object that

was calling the set method:

public void method() {

example_object.set_attribute(a);

get_update_manager().update(example_object);

}

The argumentation that in this case a lot of redundant code would be produced since the

update function has to be implemented in every calling object, instead of just once in the

called object does not really hold true when looking into programming practice. The number

72 4 Logical Architecture

of external objects calling an object is mostly very well manageable. It finally seems that

thousands of set/ get access methods could be eliminated which would lead to a tremendous

code reduction and improved clearity.

The language introduced in chapter 9 does not use encapsulation and the attributes (state

knowledge) and methods (logic knowledge) modelled in it are not bundled together.

Inheritance

Inheritance allows for code minimisation by letting classes inherit attributes and methods

from their superior (sometimes called parent) class (figure 4.10). Redundant code can such

be avoided and existing code can be reused. An inheriting class in Java source code looks

like this:

public class example extends super_class {

}

sub_class

 - sub_attribute : type

 + sub_method() : void

super_class

 - super_attribute : type

 + super_method() : void

Figure 4.10: Inheritance as UML Diagram

Some object oriented programming languages (such as C++) permit Multiple Inheritance.

Classes written in those languages can have more than one superior class. Other languages

(such as Java) that have Single Inheritance only, sometimes offer to inherit (realise/ im-

plement) multiple interfaces. An interface forces its subclasses to implement all methods

4.1 Paradigm and Language 73

it declares (more on this in section 4.3.3) and can such provide a common Application

Programming Interface (API) which makes classes interchangeable and hence encourages

reuse.

Fragile Base Class

Despite the possible code reduction through class inheritance, there are some negative effects

that hinder just this code reduction and reuse. John K. Ousterhout writes in his article [244]:

Implementation inheritance, where one class borrows code that was written for

another class, is a bad idea that makes software harder to manage and reuse. It

binds the implementations of classes together so that neither class can be un-

derstood without the other: a subclass cannot be understood without knowing

how the inherited methods are implemented in its superclass, and a superclass

cannot be understood without knowing how its methods are inherited in sub-

classes. In a complex class hierarchy, no individual class can be understood

without understanding all the other classes in the hierarchy. Even worse, a

class cannot be separated from its hierarchy for reuse. Multiple inheritance

makes these problems even worse. Implementation inheritance causes the same

intertwining and brittleness that have been observed when goto statements are

overused. As a result, object-oriented systems often suffer from complexity and

lack of reuse.

Unwanted dependencies caused simply by the usage of inheritance are called Fragile Base

Class Problem [41, section Layers; p. 48]. The source code changes resulting from base

class manipulation are also called Cascade of Change [119, Vorwort]. They are just the

opposite of what inheritance was actually intended to be for: Reusability. Leonid Mikhajlov

and Emil Sekerinski [213] write:

This problem occurs in open object-oriented systems employing code inheri-

tance as an implementation reuse mechanism. System developers unaware of

extensions to the system developed by its users may produce a seemingly accept-

able revision of a base class which may damage its extensions. The fragile base

class problem becomes apparent during maintenance of open object-oriented

systems, but requires consideration during design.

74 4 Logical Architecture

They identify the following Restrictions [213] disciplining the code inheritance mechanism,

thus avoiding the Fragile Base Class Problem, but on the cost of general Flexibility:

- No cycles: A base class revision and a modifier should not jointly introduce new cyclic

method dependencies.

- No revision self-calling assumptions: Revision class methods should not make any

additional assumptions about the behaviour of the other methods of itself. Only the

behaviour described in the base class may be taken into consideration.

- No base class down-calling assumptions: Methods of a modifier should disregard the

fact that base class self-calls can get redirected to the modifier itself. In this case

bodies of the corresponding methods in the base class should be considered instead,

as if there were no dynamic binding.

- No direct access to base class state: An extension class may not access the state of

its base class directly, but only through calling base class methods.

- No modifier invariant function: A modifier should not bind values of its instance

variables with values of the intended base class instance variables to generate an

invariant.

In order to remain highly flexible and to avoid the fragile base class problem, the language

described in chapter 9 does not use inheritance, although it could be extended to do so. In

this case, of course, its interpreter (chapter 10) would have to be adapted as well.

Polymorphism

Another object oriented feature that comes with inheritance is Polymorphism. It allows

methods to be overloaded (sometimes called overridden). That is, on two objects created

from different classes inheriting from each other, the right equally named method will be

called by the language interpreter program (figure 4.11), which leads to different behaviour

depending on the current object context. Following is a Java code example overloading a

method to gain polymorphic behaviour:

public class super_class {

public void method() {

do_something();

}

}

public class sub_class extends super_class {

4.1 Paradigm and Language 75

public void method() {

do_something_else();

}

}

sub_class

 + method() : void

super_class

 + method() : void

void method() {

 do_something();

}

void method() {

 do_something_else();

}

 super.method();

Figure 4.11: Polymorphism as UML Diagram

If objects instantiated from a sub class want to make use of the functionality contained in

the super class’ equally named method, the sub class’ method needs to call the super class’

method explicitly using the keyword super :

public class sub_class extends super_class {

public void method() {

super.method();

do_something_else();

}

}

Container

An object that got created through instantiating a class represents an allocated area in a

computer’s memory which needs to be referenced in order to be able to work with it, and

to finally destroy it. The size of that area may change dynamically, depending on how

76 4 Logical Architecture

the properties of the object are manipulated. Primitive types like integer or double also

reserve memory space, only that the size of that space is not dynamic; it is pre-defined

by the programming language, for each type. All Structured- and Procedural Programming

(SPP) languages and some Object Oriented Programming (OOP) languages, like Java, offer

standard primitive types.

array

vector

stack

set

list

container

hash table

hash map

collection treemap

Figure 4.12: Java Container Framework Systematics

One way to store references to more than one dynamic element in memory, or primitive data,

is a Container. Modern programming languages offer many different kinds of containers.

Figure 4.12 shows a systematics of the Java container framework [112], as example, which

gets briefly introduced in the following paragraphs. Its main categories of systematisation

are Collection, Map and Tree.

A similar library of container classes, algorithms and iterators exists for the C++ program-

ming language. It is called Standard Template Library (STL) [153] and it talks of Sequence

and Associative Container, where Java says Collection and Map.

Collection The Array is the most basic form of a container. It represents an allocated

area in the computer’s Random Access Memory (RAM). A Vector implements a dynamically

growable array of objects. The Stack class extends the vector class and represents a Last-

In-First-Out (LIFO) stack of objects. A collection that contains no duplicate elements is

4.1 Paradigm and Language 77

called a Set. Unlike sets, Lists typically allow duplicate elements. Synonyms for list are

Ordered Collection and Sequence.

Objects that can generate a series of elements, one at a time, implement the Enumeration

interface. Successive calls to the nextElement method return successive elements of such a

series. In recent releases of the Java Development Kit (JDK) [112], Iterator takes the place

of enumeration, in the collections framework. An iterator over a collection differs from an

enumeration in that it allows the caller to remove elements, with well-defined semantics,

from the underlying collection during an iteration.

Map A Map (also called Dictionary or Table) is an object that maps Keys to Values. It

cannot contain duplicate keys; each key can map to at most one value. Java offers two kinds

of a map: Hash Map and Hash Table. The former is roughly equivalent to the latter, except

that it permits null values and the null key [112, 120].

Tree A Tree, or more exact Tree Node, is a further kind of container. Many tree nodes, in

hierarchical order, may form a tree. A tree node may represent a Leaf with no children or

a Branch with one or more children. The top-most tree node is usually called Root.

Falsifying Polymorphism

Problems can occur when inheriting containers. This is now demonstrated on a Java example

adopted from [222].

A class ExtendedHashtable extends the standard container Hashtable (figure 4.13). The

ExtendedHashtable overrides the put method and lets it do two calls to the put method of

the superior class Hashtable, the second of these calls adding the letter s to the key.

A first object of type ExtendedHashtable gets filled by calling the put method which adds

two identical element values with the two different keys ball and balls to the container.

When the container is full, a new one with extended size gets created and all values of the

old have to be copied into the new container, which is again of type ExtendedHashtable.

If the put method is now used to accomplish this, a falsified container with more elements

than the original one will be retrieved. The copying of the first element ball results in two

elements ball and balls, placed in the new container. The copying of the second element

78 4 Logical Architecture

balls

old new

copy

ball,

Hashtable

 put(Object key, Object value)

ExtendedHashtable

 put(Object key, Object value)

super.put(key, value);

super.put(key + “s”, value);

ballssballs, ball, balls,

Figure 4.13: Falsified Contents with Container Inheritance

balls adds two further elements balls and ballss, whereby the balls key stemming from the

copying of the first element gets overwritten.

This example demonstrates only the principle of how the automatic size extension of inher-

ited container objects with element copying using container-owned methods can incorrectly

modify the container contents. The Java language’s Hashtable class uses a slightly different

mechanism, handing over the hashtable object as parameter of a copy constructor which

internally calls a putAll method which finally calls the put method. Other OOP languages

may use different mechanisms. Of course, there are workarounds to avoid the described

troubles. But as a matter of fact, container inheritance may – due to polymorphism – cause

unpredictable behaviour leading to falsified container contents.

The language and interpreter introduced in chapters 9 and 10 base on just one container

structure for knowledge representation, that covers many of the traditional forms of con-

tainers.

Conclusion

As could be seen in the previous sections, OOP contributed many new concepts to software

design, thus trying to improve SPP. Most importantly, SPP data structures (struct, record)

4.2 Pattern 79

got extended towards the Class which does not only hold data (attributes), but also op-

erations (methods). This brought with the concept of Encapsulation, which permits only

special methods of an Object (class instance) to access the data (properties) of that same

object. The next innovation was Inheritance, which allows a class to reuse the attributes

and methods of its super class(es). Finally, inheritance was used to introduce the concept

of Polymorphism, which lets objects react differently, depending on the class they were

instantiated with.

All of these concepts were true innovations as compared with traditional SPP techniques.

However, they have their own drawbacks: growth of the number of dependencies within a

system (links between classes), caused by the bundling of attributes and methods; fragile

base class problem; falsified container contents with container inheritance. This work will not

just revise these concepts, but turn them upside down. Data (attributes) and operations/

algorithms (methods) are not bundled any longer; the resolution of inheritance relationships

at runtime gets eliminated and with it polymorphism; container inheritance is not necessary

any longer, since only one global container structure (knowledge container) is used in a

system. More on that in part II of this work.

4.2 Pattern

The previous sections investigated basic concepts offered by today’s programming languages

and -paradigms. The following and all later sections of this chapter describe design tech-

niques that belong to a higher conceptual level. Patterns, in a more correct form called

Software Patterns, are the first technique dealt with. They became popular through Object

Oriented Programming (OOP), but their use is not limited to OOP languages. Patterns

represent solutions for recurring software design problems and can be understood as rec-

ommendations for how to build software in an elegant and efficient way. In the past, more

detailed definitions have been given by meanwhile well-known authors.

Christopher Alexander, an architect and urban planner, writes [3]: Each pattern describes

a problem which occurs over and over again in our environment, and then describes the

core of the solution to that problem, in such a way that you can use this solution a million

times over, without ever doing it the same way twice. He gave this definition primarily for

problems occuring in architecture, construction, and urban/regional planning, but it can

be applied in the same manner to software design, as done first by Ward Cunningham and

others [148].

80 4 Logical Architecture

The systems designer Swift [73] sees a pattern as: essentially a morphological law, a re-

lationship among parts (pattern components) within a particular context. Specifically, a

pattern expresses a relationship among parts that resolves problems that would exist if the

relationship were missing. As patterns express these relationships, they are not formulae

or algorithms, but rather loose rules of thumb or heuristics.

The Gang of Four (GoF) (Erich Gamma et al.) applied Alexander’s definition to object ori-

ented software and created a whole catalogue of design patterns [108]. After them, patterns

are: Structured models of thinking that represent reusable solutions for one-and-the-same

design problem. They shall support the development, maintenance and extension of large

software systems, while being independent from concrete implementation languages. The

experts identified four basic elements of each pattern: Name, Problem, Solution and Con-

sequences (advantages and disadvantages).

For Frank Buschmann et al., software patterns contain the knowledge of experienced software

engineers and help to improve the quality of decision making [41]. In his opinion, they are

basic solutions for problems that already occurred in a similar way before. Therefore, the

author talks of Problem Solution Pairs.

Martin Fowler means that: A pattern is some idea that already was helpful in a practical

context and will probably be useful in other contexts, too. [97]. After him, patterns, however

they are written, have four essential parts: Context, Problem, Forces and Solution.

Depending on their experience, software developers can produce good or bad solutions, in

every domain. One possibility to improve less well-done designs or to extend legacy systems

are the so-called Anti-Patterns (telling how to go from a problem to a bad solution), or

the contrasting Amelioration Patterns (telling how to go from a bad solution to a good

solution) [148]. Both help finding patterns in wrong-designed systems and give advice for

their improvement.

There are efforts to combine patterns to form a Pattern Language, also called Pattern

System [41]. Such systems describe dependencies between patterns, specify rules for pattern

combination and show how patterns can be implemented and used in software development

practice.

Several schemes of Pattern Classification exist. One possible is shown in figure 4.14. Consid-

ering the level of abstraction (granularity), it distinguishes between Architectural-, Design-

and Idiomatic patterns [41]. Design patterns, in turn, are divided after their functional-

ity (problem category) into Creational-, Structural- and Behavioural patterns [108]. The

4.2 Pattern 81

pattern

architectural idiomaticdesign

creational structural behavioural

Figure 4.14: Software Pattern Classification

Wikipedia Encyclopedia [60] mentions three further problem categories: Fundamental-,

Concurrency- and Real-time patterns. Other criteria (dimensions) of classification exist.

Fowler introduces a completely different category which he calls Analysis Patterns [97].

These are applicable early in the software engineering process (chapter 2). And he defines

patterns that are more often used for describing the modelling Language than the actual

Models as Meta Model Patterns.

In the following sections, a greater number of known patterns will be described briefly. They

form the scientific basis for the ideas following in part II of this work and some of them appear

in a modified form in the language and interpreter introduced in part III. Chapter 7 moreover

introduces a new pattern systematics for which it references common patterns as introduced

here. However, since the next sections do not want to copy the work accomplished by the

above-mentioned authors, they refer to the corresponding literaric source for more detailed

explanation.

4.2.1 Architectural

Architectural Patterns are templates for the gross design of software systems. They describe

concrete software architectures and provide basic structuring (modularisation) principles.

82 4 Logical Architecture

Layers

The Layers pattern [41] is one of the most often used principles to subdivide a system into

logical levels. One variant was shown in figure 4.1, at the beginning of this chapter. It

contained the three layers Presentation, Domain Logic and Data Source. A more general

illustration can be seen in figure 4.15. It shows a client using the functionality encapsulated

in a layer. That top-most layer delegates subtasks to lower-level layers which are specialised

on solving them. Another well-known example making use of this pattern is the ISO OSI

model as introduced in section 3.11.

client layer n

layer n - 1

layer 1

uses
 highest abstraction level

 lowest abstraction level

layer n - 2

 provides services

 to layer n

 delegates subtasks

 to layer n-2

Figure 4.15: Layers Pattern

One variant of this pattern, mentioned by Buschmann [41], is the Relaxed-Layered-System.

It permits a layer to not only use the services of its direct base layer, but also of yet lower-

situated layers. The base layer, in this case, is called transparent.

The ontology examples in chapter 7 are organised according to the Layers pattern. Their

layers represent levels of growing granularity.

Layer Supertype

The Layer Supertype pattern [101] is a rather simple but quite useful one. It assumes that

a system is structured using the Layers pattern. What the pattern proposes is to add a

4.2 Pattern 83

(possibly abstract) class that all other classes in its layer inherit from (figure 4.16). The

reason is that basic functionality common to all classes in a layer, for example persistence-

or logging capabilities, can be provided once by the supertype, such avoiding redundancies.

layer

super_type

 common_attribute : int

sub_type_1

 attribute_1 : int

sub_type_2

 attribute_2 : int

sub_type_3

 attribute_3 : int

Figure 4.16: Layer Supertype Pattern

The language introduced in chapter 9 does not use inheritance and thus cannot use super

knowledge templates in the meaning of the Layer Supertype pattern. Nevertheless, the

pattern is important because of its idea to categorise similar knowledge, such as all templates

of: a Textual User Interface (TUI), a Graphical User Interface (GUI), a Domain Model etc.

Domain Model

One of the three layers in figure 4.1 shown at the beginning of this chapter is the Domain

Model. Fowler [101] proposed it as singular pattern because of its importance in large-scale

business systems. Figure 4.17 shows an imaginary business domain model. The actual focus,

however, should not be put on the inside structure of this example model, but on the fact

that the domain model represents a layer on its own.

This separation cannot be found in all systems and in fact, it does not make sense for all

systems. Small solutions let their user interface or application control, respectively, access a

database directly which avoids the rather big effort of creating a special domain model. But

84 4 Logical Architecture

domain model layer

object_2_2

 - attribute

 + method()

 # method_2()

 # method_1()

object_1

 - object_2

 - object_3

object_2

 - attribute

 + method()

object_2_1

 - attribute_1

 - attribute_2

 + method()

object_3

 + method_1()

 + method_2()

 + method_3()

object_2 0 .. *

1 .. 5

object_3

Figure 4.17: Domain Model Pattern

the larger the system to be created and the more clear the desired architecture shall be, the

more recommendable it is to use the Domain Model pattern.

It will be helpful to have heard about this pattern when reading chapter 8 dealing with

domain-, user interface- and other models and their translation into each other.

Data Mapper

Besides the Domain Model, figure 4.1 contained a layer called Data Source which may for

example represent a database. Normally, both layers need to exchange data. Modern systems

use OOP methods to implement the domain model. Database models, on the other hand, are

often implemented on the basis of an Entity Relationship Model (ERM). In order to avoid

close coupling and a mix-up of both layers, the introduction of an additional Data Mapper

layer [101] in between the two others may be justified (figure 4.18). The most important

idea of this pattern is to abolish the interdependencies of domain- and persistence model

(database).

The dashed arrows in figure 4.18 indicate dependencies. The data mapper layer knows the

domain model- as well as the data source layer, via unidirectional relations. Its task is to

translate between the two, in both directions. Domain model and data source know nothing

4.2 Pattern 85

domain layer

domain_object

 - id : long

<<interface>>

object_finder

 + find(id : long)

data mapper layer

object_mapper

 + find(id : long)

 # load()

database

Figure 4.18: Data Mapper Pattern

from each other. Each domain model class knows its appropriate object finder interface but

does not know the implementation of the same. That is, persistence- and data retrieval

mechanisms are hidden in front of the domain model. The object mapper implementation

is part of the mapping package and also implements all finder methods. It maps data of the

received result sets to the special attributes of the domain model objects.

The Mediator pattern [108] is similar to the Mapper, in that it is used to decouple different

parts of a system. Fowler [101] writes: . . . the objects that use a mediator are aware of

it, even if they aren’t aware of each other; the objects that a mapper separates aren’t even

aware of the mapper.

Although the Data Mapper pattern is very helpful at implementing OO systems, two things

are to be criticised: Firstly, since the object finder relies on functionality specific to the

retrieval of persistent data, it does actually belong into the data mapper layer what, if done,

would create bidirectional dependencies between the domain model- and data mapper layer.

But also with the object finder remaining in the domain model layer, dependencies are not

purely unidirectional. It is true that from an OO view, they are. Internally, however, a

super class or interface relates to its inheriting classes, so that it can call their methods to

satisfy the polymorphic behaviour.

Secondly, the layers do not truly build on each other. Taken an architecture similar to the

86 4 Logical Architecture

one in figure 4.1, consisting of the following five instead of only three layers:

1. Presentation

2. Application Process

3. Domain Model

4. Data Mapper

5. Data Source

. . . the application process does not only access the domain model layer, it also has to manage

(create and destroy) the objects of the data mapper layer. In other words, it surpasses

(disregards) the domain model layer when accessing the data mapper layer directly.

Chapter 8 will describe how a strict separation of state- and logic knowledge allows to access

and translate runtime models unidirectionally.

Data Transfer Object

domain layer

domain_object_1

 - attribute_1

domain_object_2

 - attribute_2

assembler layer

assembler

 + assemble()

 + disassemble()

dto layer

data_transfer_object

 - attribute_1

 - attribute_2

Figure 4.19: Data Transfer Object Pattern

It is a well-known fact that many small requests between two processes, and even more

between two hosts in a network need a lot of time. A local machine with two processes has

to permanently change the Program Context ; a network has a lot of Transfers. For each

4.2 Pattern 87

request, there is a necessity of at least two transfers – the Question of the client and the

Answer of the server. Transfer methods are often expected to deliver common data such

as a Person’s address, that is surname, first name, street, zip-code, town and so on. These

information is best retrieved by only one transfer call. That way, the client has to wait only

once for a server response and the server does not get too many single tasks. All address

data (in this example) would best be packaged together and sent back to the client.

A scenario of that kind is exactly what the Data Transfer Object pattern [101] proposes a

solution for: A central Assembler object takes all common data of the server’s domain model

objects and assembles them together into a special Data Transfer Object (DTO), which is

a flat data structure (figure 4.19). The server will then send this DTO over network to the

client. On the client’s side, a similar assembler takes the DTO, finds out all received data

and maps (disassembles) them to the client’s domain model. In that manner, a DTO is able

to drastically improve the communication performance.

Both, Data Mapper- and DTO pattern translate one model into another. Due to this

similarity, chapter 8 will try to merge them into a common Translator architecture.

Model View Controller

After having had a closer look at design patterns for persistence (Data Mapper) and com-

munication (Data Transfer Object), this section considers the presentation layer of an ap-

plication (figure 4.1), which is often realised in form of a Graphical User Interface (GUI).

Nowadays, the well-known Model View Controller (MVC) pattern [41, 101] is used by a

majority of standard business applications. Its principle is to have the Model holding do-

main data, the View accessing and displaying these data and the Controller providing the

workflow of the application by handling any action events happening on the view (figure

4.20). This separation eases the creation of applications with many synchronous views on

the same data. Internally, the MVC may consist of design patterns like:

- Observer (section 4.2.2) which notifies the views about data model changes

- Strategy [108] which encapsulates exchangeable functionality of the controller

- Wrapper (section 4.2.2) which delegates controller functionality to the Strategy

- Composite (section 4.2.2) which equips graphical views with a hierarchical structure

Some MVC implementations like parts of the Java Foundation Classes (JFC) use a simpli-

fied version not separating controllers from their views. The Microsoft Foundation Classes

88 4 Logical Architecture

view controller

model

Figure 4.20: Model View Controller Pattern

(MFC) C++ library calls its implementation Document-View.

Besides the above-mentioned patterns Data Mapper and DTO, MVC is the third one getting

merged into a common Translator architecture, in chapter 8.

Hierarchical Model View Controller

There exist several extensions of the MVC pattern, one of them being the Hierarchical Model

View Controller (HMVC) [43]. It combines the patterns Composite (section 4.2.2), Layers

(section 4.2.1) and Chain of Responsibility (section 4.2.2) into one conceptual architecture

(figure 4.21). This architecture divides the presentation layer into hierarchical sections

containing so-called MVC Triads. The triads conventionally consist of Model, View and

Controller, each. They communicate with each other by relating over their controller object.

Following the Layers pattern, only neighbouring layers know from each other.

As a practical example, the upper-most triad could represent a graphical Dialogue and the

next lower one a Panel. Being a container, too, the panel could hold a third triad like

for example a Button. Events occuring at the button are then normally processed by the

corresponding controller belonging to the button’s triad. If, however, the button controller

cannot handle the event, that is forwarded along the chain of responsibility to the controller

4.2 Pattern 89

layer 1 triad

view controller

model layer 2 triad

view controller

model layer 3 triad

view controller

model

child

child

parent

parent

Figure 4.21: Hierarchical Model View Controller Pattern

of the higher-next layer. If also the panel controller does not know how to handle the event,

the final responsibility falls to the controller of the dialogue’s triad.

The HMVC is similar to the Presentation Abstraction Control (PAC) pattern [41]. A PAC

Agent is comparable to an HMVC Triad.

Chapter 7 will apply the principle of Hierarchy not only to logic- (controller), but also to

user interface- (view), domain- and further models.

Microkernel

The Microkernel pattern [41] allows to keep a system flexible and adaptable to changing re-

quirements or new technologies. A minimal functional Kernel gets separated from extended

functionality. The kernel may call internal- or external servers (figure 4.22) to let them solve

special tasks which do not belong to its own core responsibility. Internal servers, also called

Daemons, were already mentioned in section 3.6.

This pattern provides a Plug & Play environment and serves as base architecture for many

modern Operating Systems (OS). Andrew S. Tanenbaum recommends its use as well [304].

And also the interpreter that will be described in chapter 10 uses this pattern in its own

adapted form.

90 4 Logical Architecture

internal_server

 receive_request()

 execute_service()

client

 do_task()

adapter

 call_service()

 create_request()

microkernel

 execute_mechanism()

 init_communication()

 find_receiver()

 create_handle()

 send_message()

 call_internal_server()

calls

service
external_server

 receive_request()

 dispatch_request()

 execute_service()

sends

request

initialises

communication

calls

activates

Figure 4.22: Microkernel Pattern

transmits

message
server_side_proxy

 pack_data()

 unpack_data()

 call_service()

 send_response()

client

 call_server()

 start_task()

 use_broker_api

bridge

 pack_data()

 unpack_data()

 forward_message()

 transmit_message()

calls

server

 initialise()

 enter_main_loop()

 run_service()

 use_broker_api()

broker

 main_event_loop()

 update_repository()

 register_service()

 acknowledge()

 find_server()

 find_client()

 forward_request()

 forward_response()

calls

calls

transmits

message
client_side_proxy

 pack_data()

 unpack_data()

 send_request()

 return

uses

api

uses

api

Figure 4.23: Broker Pattern

4.2 Pattern 91

Broker

The Broker pattern [41] may support the creation of an IT infrastructure for distributed

applications. It connects decoupled components which interact through remote service in-

vocations (figure 4.23). The broker is responsible for coordinating all communication, for

forwarding requests as well as for transmitting results and exceptions.

Chapter 10 introduces an interpreter program being able to act as broker.

Pipes and Filters

Systems that process streams of data may make use of the Pipes and Filters pattern [41].

It encapsulates every processing step in an own Filter component and forwards the data

through channels which are called Pipeline (figure 4.24). The data forwarding can follow

various scenarios:

filter_2

 encode()

 decode()

input

 process()

filter_3

 encode()

 decode()

decode

output

 process()

filter_1

 encode()

 decode()

encode

encode

decode encode

decode

Figure 4.24: Pipes and Filters Pattern

- Push: active filter pushes data to passive filter

- Pull: active filter pulls data from passive filter

- Mixed Push-Pull-Pipeline: all filters may push or pull data

- Independent Loops: all filters are active and access pipeline data

92 4 Logical Architecture

Families of related systems can be formed by changing the single filter positions. Special

communication filters are also used in the interpreter program of chapter 10. Its filters

belong to neither of the above-listed forms of data forwarding, because they are all passive,

controlled from an outside entity which is not a filter itself.

Reflection

The Reflection pattern [41] (also known under the synonyms Open Implementation or Meta-

Level Architecture) provides a mechanism to change the structure and behaviour of a soft-

ware system dynamically, that is at runtime, which is why that mechanism is sometimes

called Run Time Type Identification (RTTI). A reflective system owns information about

itself and uses these to remain changeable and extensible.

meta meta level

meta level

meta_object_protocolmeta_object_1 meta_object_2

modifies

base level

component_1 component_2 user_interface

provides

access to

modifies

usesuses usesuses

retrieves

information

Figure 4.25: Reflection Pattern

Reflective information about something is called Meta Information. Therefore, the level

above the Base Level in figure 4.25 is labelled Meta Level. The base level depends on the

meta level, so that changes in the meta level will also affect the base level. All manipulation

of meta objects happens through an interface called Meta Object Protocol (MOP), which is

responsible for checking the correctness of- and for performing a change. If a further level

holds information about the meta level, then that additional level is called Meta Meta Level,

and so forth.

4.2 Pattern 93

Many examples of meta level architectures exist. In his book Analysis Patterns [97], Fowler

uses them extensively. He talks of Knowledge Level (instead of meta level) and Operational

Level (instead of base level). Elements of the Unified Modeling Language (UML) are defined

in an own meta model [235]. And the principles of reflection are also supported by several

programming languages, such as Smalltalk [202] and Java [112].

Classes (types) in a system have a static structure, as defined by the developer at design time.

Normally, most classes belong to the base level containing the application logic. As written

before, one way to change the structure and behaviour of classes at runtime is to introduce

a meta level providing type information, in other words functionality that all application

classes need. This helps avoid redundant implementations of the same functionality.

Looking closer at functionality, it turns out that some basic features like persistence and

communication occur repeatedly in almost all systems, while other parts are very specific

to one concrete application. Traditionally, the application classes in the base level have to

cope with the general system functionality although that is not in their original interest. It

therefore seems logical to try to divide application- and system functionality. Chapter 6 will

deal with this thought in more detail.

Broken Type System

This section does not describe another pattern. Instead, it wants to come back to reflective

mechanisms as described before and elaborate their negative effects a bit more. Although

the following review concentrates on the example of Java, many points surely count for other

OO languages as well. Languages like Smalltalk or the Common Lisp Object System (CLOS)

offer reflective mechanisms [41]. The C++ Standard Library, also known as libstdc++ [195],

has a type info class providing meta information that C++ innately does not have. In the

Java framework [112], finally, the basic java.lang.* package contains the top-most super

class java.lang.Object. All other classes in the framework inherit from it. Additionally, the

package contains a class java.lang.Class which, among others, keeps reflective (meta) type

information about a Java class’:

- Package

- Name

- Superior Class

- Interfaces

94 4 Logical Architecture

- Fields

- Methods

- Constructors

- Modifiers

- Member Classes

base level

java.lang.Object

 getClass()

java virtual machine

keeps

instances

keeps

instances

calls native

procedures

meta level

java.lang.Class

 getPackage()

 getName()

 getSuperclass()

 getInterfaces()

 getFields()

 getMethods()

 getConstructors()

 getModifiers()

design time staticsruntime dynamics

Figure 4.26: Java Type System

Via the getClass() method which they inherit from java.lang.Object (figure 4.26), all Java

classes have access to that reflective information in their meta class. The meta class

java.lang.Class itself uses so-called native methods to access the information in the Java

Virtual Machine (JVM). The JVM operates on a level underneath the actual application,

close to the Operating System (OS). It interprets the Java application source code and

resolves all object-oriented- into procedural structures, and finally low-level system instruc-

tions. All runtime objects, that is class instances, are hold in dynamic structures internal

to the JVM. That is why native methods need to be used to access and change the runtime

structure or behaviour of objects.

One problem that becomes obvious when inspecting figure 4.26 is the existence of a Bidi-

rectional Dependency (Circular Reference). The two sub dependencies causing it are:

1. Inheritance of java.lang.Class from java.lang.Object which is due to the rule that all

Java classes need to inherit from the top-most framework class

4.2 Pattern 95

2. Association from java.lang.Object to java.lang.Class which enables every object to

access its meta class using the getClass() method

The avoidance of circular references is one of the most basic principles of computer program-

ming (section 4.2.2). The disadvantage of bidirectional dependencies between meta and basic

level is also mentioned by Buschmann [41]. If meta classes in the kind of java.lang.Class

define the structure and behaviour of all basic classes inheriting from java.lang.Object, then

those meta classes in turn should not inherit from java.lang.Object themselves. The new

language described in chapter 9 permits applications to be programmed without bidirec-

tional dependencies. Functionality that could be put into a meta level is provided by a

low-level interpreter instead (chapter 10).

Another problem is the mixed and redundant storage of meta information which Jonathon

Tidswell [132] even calls a Broken Type System. He writes: A careful examination of the

classes in the standard runtime will show that they are not strictly instances of java.lang.Class

(hint: statics). Gilbert Carl Herschberger II [132] calls the separation of reflection and

wrappers an Inconsistent Design. Java classes are based on many different kinds of type

information:

- Structure applied by the JVM through the usage of the class keyword

- Meta information supplied by the java.lang.Class class

- Reflective information provided by java.lang.reflect.*

- Wrapper classes for primitive types in java.lang.*

- Dynamically created array classes, without having an array class file

The fact that the java.lang.Class class which is to provide meta information about classes

is a Class itself is an antagonism. It is true that that meta class is made final to avoid

its extension by inheriting subclasses. But correctly, it should not be a class at all. Yet

how can this paradoxon be resolved? Obviously, one of the two dependencies between

java.lang.Object and java.lang.Class needs to be cut. But then either the java.lang.Object

class would not be able to access its meta information anymore or the java.lang.Class class

would not be available as runtime object to other polymorphic data structures. One solution

could be to merge both classes, so that each object, by default, has the necessary methods to

access its meta information. But as it turns out, this would not be a real solution, just a Shift

of the problem to another level. As mentioned above, the JVM keeps all instances (objects)

in internal, dynamic structures. If objects were allowed to access these internal structures

96 4 Logical Architecture

via native methods (procedures), a similar kind of bidirectional dependency, between the

JVM and its stored objects, would occur. Gilbert Carl Herschberger II writes [132]:

A purist Super Platform does not bleed into the Sub Platform. In practice, this

doesn’t make people happy because transition is more difficult. Java itself is

a super platform. It bleeds into the sub platform in numerous ways, including

Java Native Interface (JNI) and Runtime.exec(), leaving us with a security

headache. Reasonable security can be achieved; but, it is far from automatic.

One finally has to ask whether the usage and manipulation of meta information is really

necessary at all! If objects did not have a static structure consisting of certain attributes

and methods, as defined by the software developer at design time, but instead based on a

uniform, dynamically changeable structure – the need to use reflective mechanisms might

disappear. More on this topic in chapter 6.

There are other Java-related points to be criticised, that have their reason in the application

of the Reflection pattern. Although it is worth noting they exist, these are not explained

in detail here, since this document wants to focus on general concepts. Gilbert Carl Her-

schberger II [132] mentions the problematic issue of Pre-Conditions, leading to corresponding

Assumptions. After him, such work-arounds were necessary to break circular references in

Java:

- Each JVM must pre-define an Internal Meta Class, implemented in machine code and

not available as Java bytecode in a class file. The java.lang.Class as base meta class

for all Java classes depends on that internal meta class and assumes its existance.

- A JVM pre-defines one Primordial Class Loader, implemented in machine code and

resolved at compile-time. Since additional class loaders need to know their meta class

when being created, they have to assume the primordial class loader exists so that,

using it, their meta class can be created first.

Further, Jonathon Tidswell [132] is of the opinion that there are a number of security issues

related to the design of Java, for example:

- Global names not local references are used for security

- Wrappers and names are used for reflection

Even though most of the issues raised in this section are rather Java-specific, many of them

apply to other programming languages as well. Smalltalk [202] and CLU [198], for example,

4.2 Pattern 97

make primitive types look like classes and do not need special Wrapper classes like Java. But

when digging deep enough, one will find that this is Syntactic Sugar, as Peter J. Landin used

to call additions to the syntax of a computer language that do not affect its expressiveness

but make it sweeter for humans to use [60].

The interpreter described in chapter 10 uses only one single type called its general Knowledge

Schema (chapter 7), and thus circumvents any troubles with broken type systems. Reflec-

tive techniques are not needed because general functionality contained in the interpreter is

separated from domain-specific knowledge which is stored externally to the interpreter, in a

special language (chapter 9).

4.2.2 Design

Gamma et al. [108] define a design pattern as: description of collaborating objects and

classes which are taylored to solve a general design problem in a special context. Mostly,

patterns are in relation to each other. They can be combined to master more complex tasks.

Command

client invoker command

 execute()

concrete_command

 state

 execute()

receiver

 action()

receiver

 receiver.action()

Figure 4.27: Command Pattern

The Command pattern [108], also known as Action or Transaction, sometimes also Signal,

98 4 Logical Architecture

encapsulates a command in form of an object. That way, operations can get parameterised;

they can be put in a queue, be made undone or traced in a log book. Figure 4.27 shows the

structure of the pattern.

Chapter 8 uses the idea of representing operations and algorithms (logic knowledge) as

independent models, similar to encapsulated commands.

Wrapper

The Wrapper pattern [108] allows otherwise incompatible classes to work together. It can

be seen as skin object enclosing (wrapping) an inner core object, to which it provides access.

In other words: It adapts the interface of a class which is why Gamma et al. call the pattern

Adapter. As can be seen in figure 4.28, this pattern makes heavy use of Delegation, where

the Delegator is the adapter (or wrapper) and the Delegatee is the class being adapted [148].

client target

 request()

wrapper

 request()

contents

 specific_request()

 contents.specific_request()

target

contents

Figure 4.28: Wrapper Pattern

Knowledge templates created in the language described in chapter 9 wrap the more fine-

granular templates they consist of.

4.2 Pattern 99

Whole-Part

Whenever many components form a semantic unit, they can be subsumed by the Whole-Part

pattern [41]. It encapsulates single part objects (figure 4.29) and controls their cooperation.

Part objects are not addressable directly. Almost all software systems contain some com-

ponents or sub systems which could be organised by help of this pattern. In some way, it

is quite similar to the previously introduced Wrapper pattern, only that not just one but

many objects are wrapped.

client

 do_task()

part_1

 service_1_a()

 service_1_b()

calls

service
whole

 service_a()

 service_b()

part_n

 service_n_a()

 service_n_b()

part_2

 service_2_a()

 service_2_b()

combines

Figure 4.29: Whole-Part Pattern

The principal structure of the new language introduced in chapter 9 is based on the Whole-

Part pattern. One knowledge template (whole) may consist of zero, one or many other

templates (parts).

Composite

A hierarchical object structure, also called Directed Acyclical Graph (DAG) or Tree, can

be represented by a combination of classes called Composite pattern [108]. It describes a

Component that may consist of Children (figure 4.30), which makes it comparable to the

Whole-Part pattern. The difference is that the Composite is a more generalised version,

with a dynamically extensible number of child (part) objects. The Composite is a pattern

100 4 Logical Architecture

based on Recursion, which is one of the most commonly used programming techniques at

all. The pattern’s split into Leaf- and Composite sub classes helps distinguish primitive-

from container objects. A composite tree node holds objects of type Component.

client component

 operation()

 add(p : component)

 remove(p : component)

 get(p : int) : component

leaf

 operation()

composite

 operation()

 add(p : component)

 remove(p : component)

 get(p : int) : component

 for each child in children:

 child.operation()

children

Figure 4.30: Composite Pattern

The knowledge schema introduced in chapter 7 has container capabilities, like the composite

pattern. It does, however, not distinguish between composite and leaf nodes, and not use

inheritance.

Chain of Responsibility

The Chain of Responsibility pattern [108] is similar to the Composite, in that it represents a

recursive structure as well. Objects destined to solve a task are linked with a corresponding

Successor (figure 4.31), such forming a chain. If an object is not able to solve a task, that

task is forwarded to the object’s successor, along the chain.

The pattern found wide application, for example in help systems, in event handling frame-

works or for exception handling. Its Handler class is known under synonyms like Event

Handler, Bureaucrat or Responder. Frequently, the pattern gets misused by delegating mes-

sages not only to children but also to the parent of objects. The Hierarhical Model View

Controller (HMVC) pattern (section 4.2.1) is one example for this. It causes unfavourable

4.2 Pattern 101

client handler

 handle_request()

concrete_handler

 handle_request()

successor

Figure 4.31: Chain of Responsibility Pattern

bidirectional dependencies and leads to stronger coupling between the layers of a framework,

because parent- and child objects then reference each other.

Much like state knowledge (data structures) is representable by the knowledge schema being

described in chapter 7, also logic knowledge (algorithms, operations) is. A compound logic

model may contain further logic models, which it calls or sends as signal in a manner similar

to the Chain of Responsibility principle.

Observer

Another pattern that found wide application is the Observer [108], an often-used synonym

for which is Publisher-Subscriber. It provides a notification mechanism for all objects that

registered as Observer at a Subject in whose state changes they are interested, leading to

an automatic update of all dependent objects (figure 4.32).

Similar notification mechanisms are used for Callback event handling in frameworks (section

4.2.4), where the framework core calls functionality of its extensions. The Model View

Controller- (MVC) (section 4.2.1) uses the Observer pattern to let the model notify its

observing views about necessary updates (figure 4.33). The disadvantage of the Observer

pattern is that it relies on bidirectional dependencies, so that circular references can occur,

102 4 Logical Architecture

subject

 attach(p : observer)

 detach(p : observer)

 notify()

observer

 update()

concrete_observer

 observer_state

 update()

concrete_subject

 subject_state

 set_state()

 get_state()

 for each o in observers:

 o.update()

 return subject_state observer_state = subject.get_state()

subject

observers

Figure 4.32: Observer Pattern

when a system is not programmed very carefully.

The new pattern systematics presented in chapter 7 classifies the Observer as not recom-

mendable pattern. The language and interpreter described in chapters 9 and 10 do avoid its

usage.

Bidirectional Dependency

Bidirectional References are a nightmare for every software developer. They cause Inter-

Dependencies so that changes in one part of a system can affect multiple other parts which

in turn affect the originating part, which may finally lead to cycles or even endless loops.

Also, the actual program flow and effects of changes to a system become very hard to trace.

Therefore, the avoidance of such dependencies belongs to the core principles of good software

design.

A Tree, in mathematics, is defined as Directed Acyclic Graph (DAG), also known as Oriented

Acyclic Graph [231]. It has a Root Node and Child Nodes which can become Parent Nodes

when having children themselves; otherwise they are called Leaves. Children of the same

node are Siblings. A common constraint is that no node can have more than one parent,

as [143] writes and continues: Moreover, for some applications, it is necessary to consider

4.2 Pattern 103

subject

 attach(p : observer)

 detach(p : observer)

 notify()

observer

 update()

controller

 model

 view

 initialise(model, view)

 handle_event()

 update()

model

 subject_state

 set_state()

 get_state()

 do_service()

attach

get_state

update

view

 model

 controller

 initialise(p: model)

 create_controller()

 display()

 update()

attach

do_service

create

display

Figure 4.33: MVC- using Observer Pattern

a node’s children to be an ordered list, instead of merely a set. A graph is acyclic if every

node can be reached via exactly one path, which then also is the shortest possible.

In computing, trees are used in many forms, for example as Process Tree of an operating

system [258, 149, 313] or as Object Tree of an object-oriented application. They represent

Data Structures in databases or file systems and also the Syntax Tree of languages. The

violation of the principle of the Acyclic Graph can lead to the same loops, also called Circular

References, as mentioned above, which can result in the crossing of memory limits and is a

potential security risk. Therefore, one of the main aims in the creation of the new concepts

introduced in part II of this work was the avoidance of bidirectional relations.

4.2.3 Idiomatic

An Idiom is a pattern on a low abstraction level. It describes how certain aspects of com-

ponents or the relations between them can be implemented using the means of a specific

programming language. Idioms can thus be used to describe the actual realisation of design

patterns. Besides the Counted-Pointer pattern, Buschmann [41, p. 377] also categorises

Singleton, Template Method, Factory Method and Envelope-Letter [62] as Idiom.

104 4 Logical Architecture

Template Method

The Template Method pattern [108], also called Hook Method, is an abstract definition of

the Skeleton of an algorithm. The implementation of one or more steps of that algorithm is

delegated to a sub class (figure 4.34).

abstract_class

 template_method()

 primitive_operation_1()

 primitive_operation_2()

concrete_class

 primitive_operation_1()

 primitive_operation_2()

 ...

 primitive_operation_1()

 ...

 primitive_operation_2()

 ...

Figure 4.34: Template Method Pattern

The idea of algorithm (method) templates was taken over in the design of the new lan-

guage described in chapter 9. The single template parts, however, are not inherited but

implemented in part templates referenced by their corresponding whole template, which is

actually more similar to the previously described Whole-Part pattern (section 4.2.2).

Counted Pointer

The Counted Pointer pattern [41] supports memory management in the C++ programming

language, by counting references to dynamically created objects (figure 4.35). That way,

it can avoid the destruction of an object through one client, while still being referenced by

other clients. Also, it helps avoiding memory leaks by cleaning up forgotten objects in the

style of a Garbage Collector.

Since all of its knowledge is kept in just one huge tree structure, the interpreter introduced in

chapter 10 has memory management and reference counting capabilities built in by default.

4.2 Pattern 105

client

 - handle : Handle

handle

 - body : Body

 operator->()

 handle(handle&)

 operator=()

 ~handle()

 handle(...)

body

 ref_counter : int

 service()

 - ~body()

 - body(...)

handle body

Figure 4.35: Counted Pointer Pattern

Singleton

Whenever an object-oriented system wants to ensure that only one instance of a certain class

exists, the Singleton pattern [108] can be used. It essentially is a class which encapsulates

its instance’s data and provides global access to them, via static, sometimes called class

methods (figure 4.36).

A Registry object as described by Fowler [101] often uses the Singleton pattern, to be unique

and to become globally accessible. Similarly do many so-called Manager objects, for example

change managers which are also responsible for the caching of objects.

Global, that is static access – the main purpose of the Singleton pattern, is its main weakness,

at the same time. One obvious solution to avoid singleton objects could be to forward global

information as instances from component to component, possibly using an own Lifecycle

Method (section 4.3.2). This approach, however, might bring with a rather large number

of parameters to be handed over. It therefore seems easier to use another alternative – the

central tree of knowledge instances, as done in the interpreter of chapter 10.

106 4 Logical Architecture

singleton

 - instance : singleton

 - singleton_data

 + instance() : singleton

 + singleton_operation()

 + get_singleton_data()

 - singleton() : singleton

 return the only instance

Figure 4.36: Singleton Pattern

Global Access

Statically accessible (manager) classes are often introduced to frameworks (section 4.2.4)

because some instances can not be reached anymore along normal object associations. With

instance models having a tree structure being directed and acyclic, each object can be

reached anytime in a consistent way, by navigating down the tree branches. A pure instance

tree in a computer’s Random Access Memory (RAM) represents an unidirectional structure

that permits data access along well-defined paths.

Global access via static types, on the other hand, allows any instance to address data in

memory directly, which not only complicates software development and maintenance, but,

due to uncontrollable access, is a potential security risk. The usage of static objects accessible

by any other part in a system is an Anti Pattern to Inversion of Control (IoC) (section 4.3.1),

highly insecure and hence undesirable. Chapter 7 does therefore classify all patterns using

global (static) access as not recommendable. And the language and interpreter introduced

in chapters 9 and 10 do avoid their usage.

4.2 Pattern 107

4.2.4 Framework

In the past decade, Software Frameworks have gained in importance. Patterns are consid-

ered their elementary building blocks. Yet while patterns are solutions for recurring design

problems, frameworks represent the base architecture for a family of systems [252]. Because

both concepts depend on each other, frameworks are described within the main section

Patterns.

A Framework essentially is a reusable collection of a number of cooperating abstract and

concrete classes, in a special constellation. It represents an imcomplete software system

which still needs to be extended and instantiated, to be executable. A conventional Library

is used by calling the procedures provided by it; the main part of each application is then de-

signed and realised by the developer. A Framework already represents the actual main part

of a system. Functionality added by the application developer is reversely called and used

by the framework itself. This principle carries the name Callback Mechanism. Extensions

are mostly realised through Inheritance and Polymorphism (section 4.1.15).

But not all parts of a framework are intended to be extended. After W. Pree [252], there

are Static Constraints and Dynamic Parts. Buschmann [41] calls them Frozen Spots and

Hot Spots; the Apache Jakarta Avalon framework [17] labels static parts Contracts. When

the abstract state of a framework is turned into a functioning application by instantiating

its classes, static elements remain unchanged. They form the basic structure for all derived

applications. Application-specific behaviour, on the other hand, is determined by specialising

adaptable framework parts.

The Jakarta Avalon documentation [17] defines a framework as:

1. A supporting or enclosing structure.

2. A basic system or arrangement as of ideas.

It distinguishes between Vertical Market Frameworks which focused on a single industry

like medical systems or telecommunications and would not work well in other industries,

and Horizontal Market Frameworks which were generic enough to be used across multiple

industries. Vertical market frameworks could be built on top of horizontal market frame-

works.

Just like patterns, frameworks provide higher flexibility to software components, prevent

code duplication and lower development efforts [252]. Developers are freed from frequently

108 4 Logical Architecture

reinventing the same solutions and can concentrate on actual application development. The

similar structure of applications that base on the same framework ensures consistency and

eases their maintenance, and also reduces the time it takes for a developer to learn how

the software works. Of course, the necessary adjustment for new developers should not be

underestimated; comprehensive documentation is necessary. But once the principles behind

a framework are understood, one will be able to comprehend any system built upon it.

The Java Development Kit (JDK) [112], for example, offers a number of special Collection

containers (section 4.1.15) which it calls Collection Framework ; there is also an Input Method

Framework and so on. Over the years, however, the framework definition has become a bit

fuzzy here-and-there.

The price of framework reusability is Lower Flexibility, which is due to the above-mentioned

static parts. Besides this, applications are subject to the evolution of the underlying frame-

work. However, that disadvantage shouldn’t be too bold, if the framework is designed general

and clever enough.

Framework callback mechanisms rely on Bidirectional Dependencies and bring with all their

disadvantages (section 4.2.2). To explain this briefly: Instances that want to be called by

the framework need to register at a caller before, as was explained in section 4.2.2, on the

example of the Observer pattern. In order to be able to register themselves, callees need to

know about the caller. Once callees are registered, the caller knows about them in turn.

Frequently, statically accessible classes, also called Managers, have to be introduced to a

framework, mostly due to unforeseen requirements. They often use the Singleton pattern

(section 4.2.3) to become unique within a system. Managers of that kind serve as gateway

to certain areas of the framework that are not easily reachable anymore through normal

navigation along object associations. A number of negative effects related to static object

access were already mentioned (section 4.2.3).

Chapter 7 introduces a structure called Knowledge Schema which, although being static, is

capable of representing general knowledge, thus allowing the creation of flexible application

systems. Bidirectional dependencies and global model (object) access are not an issue in

the new language and interpreter introduced in chapters 9 and 10, because any runtime

knowledge model may be accessed along well-defined paths in a simple tree-like structure.

4.3 Component Oriented Programming 109

4.3 Component Oriented Programming

In the not-so-distant past, there has been a lot of buzz in the industry touting Component

Based Design (CBD). Much of it was more marketing than the actual application of new

design principles and it is also no surprise that the definition of a Software Component

differs between authors, companies and projects. A rather formal one is that of the Avalon

framework [17] of the Apache Jakarta project [253], which says:

Component Oriented Programming takes object-oriented programming one step

further. Regular object-oriented programming organizes data objects into enti-

ties that take care of themselves. There are many advantages to this approach.

. . . But it also has a big limitation: that of object Co-Dependency. To remove

that limitation, a more rigid idea had to be formalized: the Component. The

key difference between a regular object and a component is that a component

is completely replaceable (Black Box Reuse).

Many kinds of software components exist: There are Graphical User Interface (GUI) compo-

nents known from Delphi’s Visual Component Library (VCL) [63], from Visual Basic (VB)

[64] or Java’s Abstract Window Toolkit (AWT) [112], which calls its components Beans;

there are Business components containing domain knowledge and Technical components

interacting with infrastructure systems like CORBA-/ EJB-/ DCOM middleware, with a

Database (DB) or Operating System (OS) (sections 3.3, 3.9); there are general Application

components as investigated by Avalon [17]. Whole systems, that is self-acting components,

are often called Agents (section 4.3.7).

The following sections deal with application components whose principles are investigated

on the example of the Avalon framework, because that is an Open Source Software (OSS)

project providing all sources for free. After Avalon [17], Component Oriented Programming

(COP) were not necessarily the same as Component Based Design (CBD). The latter referred

to how a system is designed ; the former to how it is implemented. In practice, one could

not implement COP without first designing with components in mind.

By following CBD rules, software projects try to integrate most diverse systems into one

environment. Although the systems should ideally use COP for the implementation of their

components, this is not a must. Legacy systems (section 3.10) can be encapsulated as well

[36], acting as one component to the outside environment. A Service offered by a legacy

system written in PL/1 [89], for example, may be designed and treated as component. It

110 4 Logical Architecture

may be accessed via Interface Definition Language (IDL) interfaces and use a Common

Object Request Broker Architecture (CORBA) for communication. The interna of such a

system, however, do neither have to follow component- nor object-oriented programming

principles.

The following sections describe popular COP techniques. Although being researched in

an own scientific field, Aspect Oriented Programming (AOP) principles are added as sub-

section, because Aspects are comparable to the Concerns of COP. For similar reasons, Agent

Oriented Programming (AGOP) techniques are described following, because Agents can be

seen as self-acting Components. All of them, that is COP’s concerns, AOP’s aspects and

AGOP’s agents owning a knowledge base will be recalled once again in part II of this work.

4.3.1 Inversion of Control

The Avalon documentation [17] defines a Component as a passive entity that performs a

specific role. According to this definition, a passive entity has to employ a passive Application

Programming Interface (API) which, after [17], were one that is acted upon, versus one that

acts itself.

As could be seen in section 4.2.4, it is often desirable to let a framework play the role of

the main program coordinating and sequencing events and application activity. Observers

(section 4.2.2) are applied to realise a callback mechanism; a Chain of Responsibility (section

4.2.2) is often set up among objects so that they can react to certain messages in a delegation

hierarchy. Both patterns rely on bidirectional dependencies whose negative effects such as

Strong Coupling were mentioned before (section 4.2.2).

The Inversion of Control (IoC) pattern [17], in a recent article of Martin Fowler also called

Dependency Injection [100], shows a way out. It is mentioned here (and was not in the

pattern section 4.2) because of its importance to COP. The pattern refers to a major semantic

detail: a parent object controlling child objects (components) through their passive API,

but not vice-versa, which results in solely unidirectional dependencies. As a side-effect, this

principle enforces Security by Design in that the flow of control (object access) is always

directed top-to-bottom. A parent instantiates its child components, hands over important

parameters (which were configured by the parent), and then calls the component’s methods.

Components are not autonomous. They have no state apart from the parent and also have

no way of obtaining a reference to implementations of parent parameters without the parent

giving them the implementation they need.

4.3 Component Oriented Programming 111

Parent objects that have the ability to host child objects are often called Container. A

container can provide a passive API itself which allows yet other containers to control that

container. A hierarchical container example can be found in the Pico Container project [56].

The container manages things like loading of configuration files, resolution of dependencies,

component handling and isolation, and lifecycle support.

4.3.2 Component Lifecycle

In a component environment, the container and the components living within it have con-

cluded a Contract which stipulates that the container is required to take its components

through what is called their Lifecycle.

startup

� constructor

� contextualise

� compose

� configure

� parameterise

� initialise

� start

shutdown

� stop

� dispose

� finalise

lifetime

� suspend

� recontextualise

� recompose

� reconfigure

� reparameterise

� resume

Figure 4.37: Component Lifecycle Methods

The lifecycle of a component specifies the methods that can be called on it, and the order

in which this may happen. The corresponding methods are called Lifecycle Methods. Some

of them can be called only once in a specific phase of a component’s lifecycle, others may

be called multiple times. The methods in figure 4.37 are examples taken from the Avalon

[17] project. They represent three phases in a component’s lifecycle: Startup, Lifetime and

Shutdown.

Lifetime phase methods can be called repeatedly, at various times after startup and before

shutdown. The constructor is called as a consequence of instantiation. Its counterpart

112 4 Logical Architecture

destructor is not considered in the project; since Avalon is a Java-based framework, it was

omitted because a Garbage Collector destroys instances at some indeterminate moment.

The order in which the various lifecycle methods are called is very specific. While none

are required (it is possible to have a component implementing none of the lifecycle methods,

although the use of that would be limited), some can only be used when others are as well.

It is up to each container to indicate which lifecycle methods it will honour, as [17] writes.

This should be clearly documented together with the description of the container.

A component lifecycle allows to forward parameters throughout a whole framework, which

makes static objects such as the singleton managers criticised in section 4.2.3 superfluous.

The configure method, for example, may forward a Configuration object containing param-

eters that otherwise would have to be made global.

4.3.3 Interface and Implementation

The Separation of Interface and Implementation is a core concept of many programming

languages. Java, for example, distinguishes Interface and Class (section 4.1.15). Mark

Grand’s book Patterns in Java [113] refers to that separation simply as Interface pattern,

one of whose uses, after him, were to encapsulate components, that is to:

- Force decoupling of different components

- Ensure easy changes of interface implementations

- Enable users to read interface documentations without having the implementation

details clutter up their perception

- Increase the reuse possibility in larger applications

The Java source code example below shows how the sayHello method whose header is

declared in the HelloWorld interface can be used as Application Programming Interface

(API) without knowing anything about the underlying implementation. Depending on the

instance, the method may be processed on a local or a remote system.

package helloworld;

public interface HelloWorld {

void sayHello(String greeting);

}

package helloworld.impl.default;

4.3 Component Oriented Programming 113

public class DefaultHelloWorld implements HelloWorld {

void sayHello(String greeting) {

System.out.println("HelloWorld Greeting: " + greeting);

}

}

package helloworld.impl.remote;

public class RemoteHelloWorld implements HelloWorld {

private RemoteMessager remoteMessager;

public RemoteHelloWorld(RemoteMessager rm) {

remoteMessager = rm;

}

void sayHello(String greeting) {

rm.sendMessage("HelloWorld Greeting: " + greeting);

}

}

Further details and recommendations for using interfaces, on examples specific to the Java

Development Kit (JDK) [112], are given in [17].

4.3.4 Separation of Concerns

The Avalon project [17] writes:

Separation of concerns in its simplest form is separating a problem into different

points of view. Every time one uses interfaces within object- or component

oriented programming, the Separation of Concerns (SoC) pattern is applied.

The interface separates the implementation concern from the concern of the

user of the interface.

Interfaces pool common methods (section 4.1.15). Inheriting an interface, components in-

dicate to their surrounding container which methods they implement so that the container

can use and rely on these. Therefore, one often talks of a Contract between container

and component. The contract defines what the container (as user of the component) must

provide and what the component produces. In the end, the separation of Interface and

Implementation (section 4.3.3) could be more correctly called separation of Contract and

Implementation.

The contract was mentioned in section 4.3.2 which explained that a container is responsible

for taking its components through a lifecycle. The Avalon project [17] specifies a number of

114 4 Logical Architecture

concerns which enforce the implementation of one or more lifecycle methods. Here is a list

of some concerns referring to the methods of section 4.3.2:

- Loggable

- Contextualizable

- Composable

- Configurable

- Initializable

- Startable

- Suspendable

For example, an object that can be configured implements the Configurable interface. The

contract surrounding that interface is that the container as instantiator of the object passes

a Configuration object to the component being a configurable object. Just what the config-

urable object does with the passed configuration object is irrelevant to the instantiator.

subjective

objective
heading

health_record
record

insurance_record

loggable

Figure 4.38: Class Inheriting Loggable Concern Interface

Figure 4.38 shows an Electronic Health Record (EHR) component implementing the Loggable

interface which indicates that the component offers functionality for the logging of messages.

To fully explain the figure: The EHR inherits from a general Record class that references

4.3 Component Oriented Programming 115

so-called Heading objects which may be a Subjective description of a patient or an Objective

result of an examination. Of course, these objects may be programmed as components as

well.

A common comparison used in component oriented programming is that of the Role coming

from theater [17]. The function or action of a component’s role within a system, as well

as its contracts, are defined by its script – the interface. Any object that implements the

component interface must comply with the contracts. This allows developers to manipu-

late components using a standard interface, without worrying about the semantics of the

implementation. They are separate concerns.

A Service Manager is often used to get an instance of the needed component. The manager’s

lookup method identifies the component based on the Fully Qualified Name (FQN) of the

role (interface). If several components functioning in the same role exist, a Component

Selector may be applied to choose the right one. More details are given in [17].

4.3.5 Spread Functionality

subjective

objective
heading

health_record
record

insurance_record

loggable

loggable

Figure 4.39: Redundant Code through Usage of Concerns

Separating concerns does not avoid Redundant Code. If two independent components want

to target the same concern what they expose by implementing the corresponding interface,

116 4 Logical Architecture

they will both have to implement the required methods redundantly. This may not be a

problem with just two records as in the example of figure 4.39, but will become an issue as

soon as other objects are to be programmed as component as well.

Another unwanted effect when using concern interfaces is the Overlapping of concerns (figure

4.40). It may happen that a superclass implements a number of lifecycle methods and their

corresponding interfaces without knowing if its subclasses eventually implement exactly one

of these, too. In such a case, redundant code would appear and the principle of efficient

programming would be injured once more.

subjective

objective
heading

health_record
record

insurance_record

loggable

loggable

loggable

Figure 4.40: Overlapping Code through Usage of Concerns

A piece of source code holding a reference to a component instance in form of a concern

interface can only call the methods of that concern. Mostly, however, other methods have to

be called as well. In this case, a Downcast from the concern interface to the component class

implementing the interface becomes necessary. Yet to be able to downcast, the class (type)

to downcast to needs to be known anyway. In the end, the usability of concern interfaces

turns out to be limited, sometimes even useless, since they only allow a few methods to be

called and information about the real class is not available.

From the viewpoint of reuse, it seems far better to inherit all components from one common

super-class, as suggested by the Layer Supertype pattern (section 4.2.1). This class would

implement necessary lifecycle methods just once, being available for all inheriting classes.

4.3 Component Oriented Programming 117

subjective

objective
heading

health_record
record

insurance_record

loggable

loggable

loggable

record

Figure 4.41: Concerns Spread Functionality, an Ontology Bunches it

For the used example this would mean to eliminate all Loggable concern interfaces (figure

4.41) and put the logging functionality into the Record super class.

Finally, the only way out of the misery of redundant code caused by concern interfaces

seems to be Concern-less software development using pure class hierarchies. And in fact,

this is what Ontologies (section 4.6.7) are proposing. Section 4.3.4 mentioned that interfaces

help pooling common methods; but in the big system picture, they actually spread them.

While concerns represented by interfaces spread functionality, away from the classes that

were actually made to keep it, an ontology bunches functionality. Chapter 7 will show some

ontology examples and introduce a knowledge schema for their hierarchical representation,

including necessary meta information.

4.3.6 Aspect Oriented Programming

Another alternative avoiding redundant code caused by the implementation of concern in-

terfaces (section 4.3.4) is the so-called Aspect Oriented Programming (AOP), which is an

extension to Object Oriented Programming (OOP). Aspects are a possibility to separate and

define concern areas addressed in program code. Wikipedia [60] writes that:

Aspects emerged out of object-oriented programming and have functionality

118 4 Logical Architecture

similar to using a meta-object protocol (section 4.2.1). Aspects relate closely

to programming concepts like subjects, mixins, and delegation.

The Avalon documentation [17] means that AOP were: the next logical step after separation

of concerns. Many concerns could not be centrally addressed using the standard mechanisms

of programming. Using AOP, it were possible to do so in a simple fashion.

The AspectJ documentation [254] writes that the motivation for AOP had been the reali-

sation that there are issues or concerns (like a security policy) that cut across many of the

natural units of modularity of an application and are not well captured by traditional pro-

gramming methodologies. For Object Oriented Programming (OOP) languages, the natural

unit of modularity were the Class. But in these languages, some concerns were not easily

turned into classes because they’d cut across classes. So these weren’t reusable, couldn’t be

refined or inherited, were spread throughout the program in an undisciplined way and, in

short, were difficult to work with. AOP were a way of modularising Crosscutting Concerns

much like OOP were a way of modularising Common Concerns. The later chapter 6 will

come back to these two kinds of concerns in short.

As shown in the previous sections, the Avalon project [17] uses concern interfaces (some-

times called Aspect Marker Interfaces) and Component Oriented Programming (COP) to

define its concerns, what frequently leads to redundant implementations. Other projects, for

instance AspectJ [254] and AspectWerkz [255], provide AOP facilities whose aim is the clean

modularisation of crosscutting concerns such as those in the following list, which AspectJ

divides into Development Aspects:

- Tracing

- Profiling and Logging

- Pre- and Post-Conditions

- Contract Enforcement

- Configuration Management

and Production Aspects:

- Change Monitoring

- Context Passing

- Providing Consistent Behaviour

4.3 Component Oriented Programming 119

The AspectJ project as an implementation of AOP for Java adds just one new concept

to that language – the Join Point, which is a well-defined point in the program flow. A

number of new constructs are introduced as well: A Pointcut picks out certain join points

and values at those points; an Advice is a piece of code that is executed when a join point

is reached. Both do dynamically affect the program flow. Inter-Type Declarations, on the

other hand, statically affect a program’s class hierarchy, namely the members of its classes

and the relationships between classes. AspectJ’s Aspect, finally, is the unit of modularity for

crosscutting concerns. It behaves somewhat like a Java class, summarising the constructs

described before, that is pointcuts, advices and inter-type declarations.

Aspect Oriented Software Development (AOSD) is about developing programs that rely

on AOP principles and languages – or language extensions, respectively. Such programs

get compiled slightly differently than usual. An Aspect Weaver generates a Join Point

Representation of the program, by merging code and aspects. Only afterwards, the program

is compiled into an executable.

Although AOP seems to successfully address the problem of crosscutting concerns, it also

brings with yet another programming paradigm that application developers have to get

familiar with. The new concepts and constructs further complicate software development.

The source code gets further fractured because of AOP’s additional modules. It is harder

to follow the program flow and one has less control on the behaviour of classes, so that the

usage of development tools becomes inevitable. But besides this rather general criticism,

there is more specific ones: The Join Point Model (JPM), for example, is reviewed in [145]

which points out some unsolved issues in AOP, while investigating the following properties

of join points:

- Granularity: only some locations in program code are suitable as join points

- Encapsulation: there is no effective way to protect join points from aspect-imposed

modification

- Semantics: low-level join point identification leads to tight coupling between aspects

and join points

- Jumping Aspects: context-sensitive join points execute different aspect code

- Sharing: dependencies and order of execution are unclear when having several pieces

of advice at the same join point

At least some of the concerns that AOP addresses could be implemented with lifecycle-

techniques as well. A logger, for example, could be created once at system startup. But

120 4 Logical Architecture

instead of accessing it across static methods, as suggested by the Singleton pattern (section

4.2.3), or executing an aspect-oriented Advice when a join point is reached, the reference

to the logger instance could simply be forwarded from component to component, using a

special globalise lifecycle method, so that each would be able to access the logger. However,

also this solution becomes tedious with a growing number of objects to be forwarded. The

new kind of programming introduced in part II of this work therefore suggests to put general

functionality (concerns, aspects) into an interpreter program acting close to hardware and

providing the general functionality to application systems executed by it.

4.3.7 Agent Oriented Programming

Components created after the principles of Component Oriented Programming (COP) are

passive, because they follow the Inversion of Control (IoC) pattern. The functionality,

or Service, they offer is called by a surrounding container, via a well-defined Application

Programming Interface (API). Active components, on the other hand, act alone. An Agent is

a self-acting component. It runs autonomically or semi-autonomically, is proactive, reactive

and social [294, p. 330]. Many individual communicative software agents may form a

Multi Agent System (MAS) [60]. Communication happens by some Agent Communication

Language (ACL) (section 4.5.3). David Parks, who calls Agent Oriented Programming

(AGOP) a Language Paradigm, writes [245]:

In AGOP, objects known as agents interact to achieve individual goals. Agents

can exist in a structure as complex as a global internet or one as simple as a

module of a common program. Agents can be autonomous entities, deciding

their next step without the interference of a user, or they can be controllable,

serving as a mediary between the user and another agent.

In search for a uniform definition of the term Agent, Ralf Kuehnel investigated numerous

sources of literature but finally comes to the conclusion [183, p. 203] that the term is just

a Metaphor standing for different properties, depending on the field it is used in. Typically

mentioned means of agents, however, are [183, p. 11]: Distribution, common Language and

Ontology (section 4.6), Cooperation and Coordination, Security and Mobility.

Comparing Agents of AGOP with Objects known from OOP, Parks [245] writes: It is not

clear, for example, what the concepts of inheritance and dynamic dispatch mean when dis-

cussing an agent. He points out the following significant differences:

4.3 Component Oriented Programming 121

- The fields of an agent are restricted. The state of an agent is described in terms of

Beliefs, Capabilities and Decisions (Obligation / Commitment). These ideas are built

into the syntax of the language.

- Each message is also defined in terms of mental activities. An agent may engage

another (or itself) with messaging activities from a restricted class of categories. In

Shoham’s formalism [287], the categories of messages are taken from Speech-Act The-

ory; they are: Informing, Requesting, Offering, Accepting, Rejecting, Competing and

Assisting.

Yoav Shoham, who presented AGOP as a new way to describe intelligent agents [287],

suggests that an AGOP system needs three elements to be complete, a:

- Formal Language with clear syntax for describing the mental state

- Programming Language in which to define agents

- Method for converting neutral applications into agents

To the Mental State of an agent belong information [183] about its:

- Environment (constraints)

- Expertise (capabilities) and Motivations (aims)

- Actions and Plans

Tim Finin et al. [87] classify the statements in a knowledge base into two categories: Beliefs

and Goals. After them, an agent’s beliefs encoded information it has about itself (capa-

bilities) and its external environment (constraints), including the knowledge bases of other

agents. An agent’s goals encoded states of its external environment that the agent would

act to achieve.

To a running Agent system belong the following modules [183]:

- Knowledge Base: mental state, as described above

- Controller: task controller, scheduler and option selection algorithm

- Executor: task runner and security

- Interaction: communication handler, sender and receiver

- Management: lifecycle manager, startup and shutdown

122 4 Logical Architecture

While early research in AGOP used special languages like Shoham’s Agent0 [287], agent-

oriented systems created later were also built upon OOP- and other contemporary pro-

gramming paradigms [183, p. 237]. Ralf Kuehnel [183] calls Agent0 alone a very limited

programming language and takes this as evidence for supporting both, the development of

agents and the representation of knowledge with a framework based on OOP principles.

For the implementation of this framework, his choice fell on Java as system programming

language (section 4.1.7).

That is, although AGOP suggests the separation of a system’s Knowledge (mental state)

from its internal runtime processing and Control (agent) and sees them both as separate

elements that should be implemented in different languages (formal vs. programming), as

mentioned by Shoham (see above), many agent-oriented systems use just one language for

implementing both. Even if they are kept in different modules, the conceptual differences

between high-level application knowledge and low-level system control cannot be honoured

sufficiently. This Mix-up puts them on the same level like traditional systems. Cybernetics

Oriented Programming (CYBOP) as described in this work therefore defines a knowledge

modelling language (chapter 9) which is independent from the implementation language of

its underlying interpreter.

Furthermore, if OO concepts like Composition or Inheritance were present in knowledge

models, the usage of an OOP language to implement the actual agent system could not

be justified any longer. In such a case, lower-level Structured and Procedural Programming

(SPP) languages would suffice, and work much more efficiently. Chapter 10 of this work

introduces a knowledge interpreter that is written in the C programming language. The

interpreter owns a knowledge base keeping all application knowledge, and it has modules for

lifecycle management, signal (event) processing, communication etc., just like the definition

of an agent (see above) suggests.

4.4 Domain Engineering

Undoubtedly, Object Oriented Programming (OOP) (section 4.1.15) is one of the most pop-

ular programming paradigms in use today. Its application within a Software Engineering

Process (SEP) (chapter 2) requires two preliminary phases called Object Oriented Analysis

(OOA) and Object Oriented Design (OOD).

The area of System Family Engineering applies a so-called Six-Pack approach (figure 4.42)

4.4 Domain Engineering 123

domain

analysis

domain

design

domain

implementation

requirements

engineering

design

analysis

integration

& testing

domain engineering

application engineering

Figure 4.42: Six Pack Model of System Family Development [44, 79]

which is based on the separation of Domain Engineering (DE) and Application Engineering

(AE). The focus of AE is a single system whereas the focus of DE is on multiple related

systems within a domain, as [44] defines. Both of them consist of analysis-, design- and

implementation phases. The results of each DE phase are fed in as foundation for the work

to be done in AE. Most of the topics described in the previous sections (4.1, 4.2 and 4.3)

turned around techniques which are applicable to both, DE as well as AE.

In Krzysztof Czarnecki’s opinion [66], the only SEPs adequately addressing the issue of

Development for Reuse were DE methodologies, most of which had essentially the same

structure. He writes:

Domain Engineering is the activity of collecting, organizing, and storing past

experience in building systems or parts of systems in a particular domain in the

form of reusable assets (i.e. reusable work-products), as well as providing an

adequate means for reusing these assets (i.e. retrieval, qualification, dissemina-

tion, adaptation, assembly, etc.) when building new systems.

After him, the main difference between traditional OOA/ OOD- and DE methods were that

the former focus on developing Single systems, the latter though on developing Families of

systems. Combined with the definition stated above ([44]), this means that OOA/ OOD

methods may be used for application-, but not domain engineering. Different methods and

124 4 Logical Architecture

techniques exist for DE. Many are given in [338, 10, 84]. Just a few of them shall be

mentioned here:

• Feature Oriented Domain Analysis (FODA)

• Reuse driven Software Engineering Business (RSEB)

• Feature RSEB (FeatuRSEB)

The RSEB methodology [164] places emphasis on purely Object Oriented (OO) techniques

which it uses together with the Unified Modelling Language (UML). Features and Feature

Models (section 4.4.4), as concept, were introduced by the FODA [46]. The combination of

RSEB and FODA results in the FeatuRSEB approach [115]. It permits a separate treatment

of domain knowledge and system functionality.

However, this work is less interested in the details of DE software development Methods, but

rather in their Knowledge Abstraction- and Implementation techniques. Some of them are

investigated in the following sections.

4.4.1 Tool & Material

In software engineering, the term Domain stands for a special field of business in which

software systems are applied. Frequently, system development methods distinguish between

data belonging to the Domain and functionality defining the actual Application working on

the domain. The system family engineering mentioned before is one example.

This view is comparable to the well-known Tools & Materials approach [351] which is based

on the distinction of active applications (tools) working on passive domain data (material).

Materials can never be accessed directly, but only by using appropriate tools, as [351] writes.

This simple idea is an important pre-condition for the separate treatment of System and

Knowledge, as explained in chapter 6 of this work.

4.4.2 Generics

Generic Programming received its name from the Generics it uses. Wikipedia [60] writes:

Generics is a technique that allows one value to take different datatypes (so-called polymor-

phism) as long as certain contracts such as subtypes and signature are kept. Templates are

4.4 Domain Engineering 125

one technique providing generics. They allow the writing of code without considering the

data type that code will eventually be used with. Two kinds of templates exist [60]:

- Function Template: behaving like a function that can accept arguments of many

different types

- Class Template: extending the same concept to classes; often used to make generic

containers

Using templates of the C++ Standard Template Library (STL) [153], a list may be declared

by writing list<T>, where T represents the type that may be substituted as needed. A

linked list of integers, for example, would be created with list<int>. After [60], there are

three primary drawbacks to the use of templates:

1. Less portable code due to the poor support for templates in compilers

2. Difficult development of templates due to unhelpful error messages produced by com-

pilers

3. Bloated code due to the extra code (instantiated template) generated by compilers

Meanwhile, many other OOP languages like Eiffel, Java, VB.NET and C# provide generic

facilities. Being used to improve the customisability of code at compile time, they retain the

efficiency of statically configured code. However, in practice (own experience of the author) it

is often hard for programmers to understand and handle generic techniques. Czarnecki [66],

who summarises generic programming as Reuse through Parameterisation, criticises that

it: limits code generation to substituting generic type parameters with concrete types and

welding together pre-existing fragments of code in a fixed pattern. Dynamic Typing (section

4.1.8) is one possibility to circumvent the need for generic programming. The interpreter

program introduced in chapter 10 uses dynamic typing; it references all knowledge via neutral

pointers whose meaning gets determined only at runtime.

4.4.3 Domain Specific Language

While a General Purpose Language (GPL), no matter if in form of a scripting- or compiled

programming language, can be used for performing a variety of different tasks, a (usually

declarative) Domain Specific Language (DSL), though less comprehensive, is more expressive

in a special domain context [323]. After [60], DSLs may: enhance the productivity, reliability,

maintainability, portability and reusability of software. In Czarnecki’s words [66], DSLs:

126 4 Logical Architecture

increase the abstraction level for a particular problem domain and, being highly intentional:

allow users to work closely with domain concepts.

Several synonyms are used to label a DSL, for example: Little Language, Application Lan-

guage, Macro or Very High Level Language [60]. To the numerous representatives belong

simple spreadsheet Macros as well as graph definition languages like GraphViz ’s DOT [186],

languages for numerical and symbolic computation as used in Mathematica [155], or parser

generator languages like Yet Another Compiler Compiler (YACC), found on Universal In-

teractive Executive (UNIX) systems. Even UNIX Shell Scripts can be considered a DSL,

with emphasis on data organisation. Further DSLs exist, yet are the boundaries between

the concepts of domain specific- and other languages quite blurry [60].

Martin Fowler [99] mentions that the Lisp [227] and Smalltalk [202] communities, rather

than defining a new language, frequently morph the GPL into a DSL, in a bottom-up manner.

Such In-Language DSLs, as he calls them, use constructs of the programming language itself.

Wondering why, programming in Smalltalk, he never really felt the need to use a separate

language, while, programming in C++/ Java/ C#, quite often he did, he concludes [99] that:

the more suitable languages (are) minimalist ones with a single basic idea that’s deeper and

simpler than traditional languages (function application for lisp, objects and messages for

smalltalk), and finds that it is the friendliness towards in-language DSLs rather than static

versus dynamic typing that let many software developers enjoy programming in Smalltalk

or Ruby so much more than in Java or C#.

Besides their limited usability outside the special domain they were created for, to the

problems that the usage of DSLs brings with belong after [211]:

- High cost of designing, implementing, and maintaining a DSL

- Difficult finding of the proper scope

- Difficult balancing between domain-specificity and GPL constructs

- Potential loss of efficiency when compared with hand-coded software

The language introduced in chapter 9 is simple and just because of that flexible enough to

be applicable for modelling the knowledge of arbitrary domains. It might have the potential

to replace some of the existing DSLs, the investigation of what is out of the scope of this

work, though.

4.4 Domain Engineering 127

4.4.4 Specification Language

A Specification Language, after [60], were a formal language used during system analysis and

design, as opposed to a Programming Language, which were a mostly directly executable

formal language used to implement a system. As its name already indicates, a specification

language describes systems at a much higher abstract level than a programming language

does. But that also means that it: must be subject to a process of refinement (the filling-in

of implementation detail), before it can actually be implemented, as [60] writes.

Many kinds of specification languages exist. Being a de facto standard, only the first two of

those representatives listed following are introduced in slightly more detail below:

- Unified Modeling Language (UML) [235]

- Feature Model [46]

- Z Specification Language [33] and B Specification Language [7]

- Vienna Development Method - Specification Language (VDM-SL) [325]

- Specification and Description Language (SDL) [163]

- Extended Meta Language (Extended ML) [279]

Unified Modeling Language

Meanwhile, the probably most famous modelling- and specification language is the Unified

Modeling Language (UML) [235, 32]. It uses a graphical notation defining a number of

diagrams. UML 2.x specifications [235] extend the number of different diagram types from

9 (UML 1.x) to 13. A good overview is given by Ambler in [6], which table 4.1 reproduces

in adapted form, showing only some diagram elements. The column Importance contains a

certainly subjective recommendation of Ambler, indicating the Learning Priority the single

diagram types have in his opinion (which the author of this work supports).

One extension to the UML that is now also part of the corresponding de-facto standard,

is the Object Constraint Language (OCL). Being a declarative language, it describes rules

applying to UML models, in a precise text format. This is because not all rules can be

expressed by diagrammatic notation [60]. The range of possible rules comprises constraints

like pre- and post-conditions or object query expressions. [312]

A common classification distinguishes UML diagrams as follows [6]:

128 4 Logical Architecture

Diagram Elements Importance

Class (CsD) Class, Inheritance, Association High

Activity (AD) Activity, Flow, Fork/ Join, Condition, Deci-

sion/ Merge

High

Sequence (SD) Object, Lifeline, Activation Box (Method-

Invocation Box), Message

High

Use Case (UCD) Use Case, Actor, Association Medium

State Machine (SMD), for-

merly State Chart Diagram

State, Transition Medium

Component (CmD) Component, Interface, Dependency Medium

Deployment (DD) Node, Connection Medium

Object (ObD), also referred

to as Instance Diagram

Object, Relationship Low

Package (PD) Package, Dependency Low

Communication (CoD),

formerly Collaboration

Diagram

Object, Association Low

Composite Structure (CSD) Collaboration, Object, Role Low

Interaction Overview (IOD) Interaction Frame, Interaction Occurrence

Frame

Low

Timing (TiD) Object, Lifeline, State, Timing Constraint Low

Table 4.1: UML 2.x Diagram Types [6]

1. Structure: CsD, CmD, CSD, DD, ObD, PD

2. Behaviour: AD, SMD, UCD

3. Interaction: CoD, IOD, SD, TiD

Others share the information represented by the diagrams according to an underlying, in-

dependently existing model [60]:

- Functional Model (UCD): Functionality of the system from the user’s point of view

- Object Model (CsD): Structure and substructure of the system using objects, at-

tributes, operations, and associations

- Dynamic Model (AD, SD, SCD): Internal behaviour of the system

A program working with UML diagrams is called UML Tool, or more exactly Computer

Aided Software Engineering (CASE) tool. Many of these programs have developed and

4.4 Domain Engineering 129

matured, over the past decade of years. Besides the standard UML diagram types, they

offer source code parsing and -generation, documentation creation and more. Some tools

introduced their own extensions to the UML de-facto standard, for example: Object Process

Diagram (OPD) [40] and Entity Relationship Diagram (ERD) [152]. The description of a

hypothetic design tool suggested for the language being introduced in chapter 9 will refer

back to the UML diagrams as mentioned in this section, and suggest a different way to

categorise them. Further, chapter 9 will try to define four diagram types to be used in

conjunction with the language described in it.

Feature Model

Czarnecki [66] sees Feature Modelling, a technique for analysing and capturing common

and variable features of a family of systems as well as their inter-dependencies in form of a

Feature Model, as the main contribution of domain engineering to OOA/ OOD methods. The

System Families, also called Software Product Lines, whose development feature models shall

support, are described by Kai Boellert [30] as group of software systems that are developed

from a common set of reusable components. Czarnecki writes:

Feature Models represent the configurability aspect of reusable software at an

abstract level, i.e. without committing to any particular implementation tech-

nique such as inheritance, aggregation, or parameterized classes. Developers

construct the initial models of the reusable software in the form of feature mod-

els and use them to guide the design and implementation (also called Feature-

driven Design). To a reuser, on the other hand, feature models represent an

overview of the functionality of the reusable software and a guide to configuring

it for a specific usage context.

In other words, a feature model (figure 4.43) is an additional form of abstraction within

a Software Engineering Process (SEP), placed between analysis- and design models. The

properties contained in a feature model are structured hierarchically. In the Feature Ori-

ented Domain Analysis (FODA) [46], a feature model distinguishes three kinds of features:

Context, Representation, Operational. Detlef Streitferdt [299] defines five feature types:

1. Functional: used by customer to compose a system

2. Interface: describe required and provided component interfaces

3. Parameter: used to configure functional features

130 4 Logical Architecture

car

pulls trailer

internal

combustion

benzine diesel

manualautomatic electro

enginetransmissionbody

requires

excludes

mandatory optional

alternative or

constraints

Figure 4.43: Classical Feature Model Diagram of a Car (based on [246])

4. Structural: relevant for an automated choice of components

5. Conditional: summarise sub-features to improve readability

Using feature models, the Traceability between concrete requirements and architecture com-

ponents can be improved. Requirements can better be mapped to architecture elements, so

that also the Communication between stakeholders in the development process can profit.

The big abstraction gap (number 1 in figure 2.6 of section 2.6) gets split into two smaller

(1a and 1b in figure 2.6) that do not close the gap conclusively, but make it easier to cross.

The disadvantage of using feature models in a SEP, however, is that another abstraction

gap causing additional effort is created through them.

The knowledge schema and language introduced in chapters 7 and 9 use a hierarchical

structure comparable to the feature model. Their elements, though, do belong to just one of

two possible kinds: whole-part model or meta property model. CYBOP knowledge models

merge some of the information that would traditionally be found in feature models with that

contained in the design diagrams and might thus be able to eliminate gap 1b. Non-functional

requirements like Performance, Scalability, Usability or Memory Efficiency are not part of

a CYBOP knowledge model, since they have nothing to do with the actual modelling of

real-world items in form of abstract concepts and belong into a corresponding analysis- and

specification document only.

4.4 Domain Engineering 131

4.4.5 Generative Programming

Generative Programming (GP), as proposed by Czarnecki [66], is a comprehensive software

development paradigm to achieving high intentionality, reusability, and adaptability without

the need to compromise the runtime performance and computing resources of the produced

software. It encompasses techniques of the following, previously described paradigms:

- Aspect Oriented Programming (AOP) (section 4.3.6): used to achieve separation of

concerns

- Generic Programming (section 4.4.2): used to parameterise over types

- Domain Specific Language (DSL) (section 4.4.3): used to improve intentionality, op-

timisation and error checking of program code

- Feature Model (section 4.4.4): used as configuration knowledge, to map between

problem- and solution space

Czarnecki’s work contributes to the formal specification and extension of the Feature Model,

but does not itself deliver new forms of knowledge abstraction. GP, however, is mentioned

here because of its idea of applying Generators (or generative techniques) producing imple-

mentation source code for a software system from the higher-level specifications defined in

the design phase. Similar techniques are used in the Model Driven Architecture (see next

section). GP is a trial to automate the process of crossing abstraction gap number 2 (with

reference to figure 2.6), and it is often quite successful. However, the gap between architec-

ture design models and program source code remains. Chapter 7 will introduce a Knowledge

Schema serving as universal type, so that differing type-based architectures do not have to

be designed anymore.

4.4.6 Model Driven Architecture

The Model Driven Architecture (MDA) [236] (figure 4.44), an approach to application design

and implementation [35] specified by the Object Management Group (OMG), represents a

suite of key standards including:

- Unified Modeling Language (UML): modelling, visualising and documenting the struc-

ture and behaviour of systems using graphical diagrams

132 4 Logical Architecture

- Meta Object Facility (MOF): representing and manipulating meta models using CORBA

and its Interface Definition Language (IDL); UML can be expressed in terms of MOF,

which is done to generate XMI

- XML Metadata Interchange (XMI): interchanging UML metamodels and models using

an Extensible Markup Language (XML)-based format

- Common Warehouse Metamodel (CWM): enabling data mining across database bound-

aries at an enterprise using a complete, comprehensive metamodel; does for data

modelling what UML does for application modelling

- Common Object Request Broker Architecture (CORBA): communicating using a pro-

gramming language-, operating system- and vendor-independent middleware platform

pervasive

service

directory

transaction event

securitycorba

xmi/

xml

.netjava

web

service
model driven

architecture

uml

mof cwm

manufacturing

space

transportation

more …

healthcare

e-commerce

finance

telecom

Figure 4.44: Model Driven Architecture [236]

Brown [35] writes: MDA encourages efficient use of system models in the software devel-

opment process, and it supports reuse of best practices when creating families of systems.

In the OMG’s own words, MDA is a: way to organise and manage enterprise architec-

tures supported by automated tools and services for both defining the models and facilitating

transformations between different model types. It aims at providing an: open, vendor-neutral

approach to the challenge of business- and technology change.

While traditional approaches like System Family or Tools & Materials (section 4.4.1) merely

distinguish between Domain and Application, the conceptual framework provided by the

4.4 Domain Engineering 133

MDA takes another step in separating abstract knowledge: It treats Platform Independent

Models (PIM), that is business- or application logic, different than the underlying Platform

Specific Models (PSM), that is implementation technology. The translation between the two

kinds of models is normally performed using automated tools for code generation (section

4.4.5).

The MDA claims to overcome the limitations of implementation technology-dependent Com-

puter Aided Software Engineering (CASE) tools via standardised mappings and meta archi-

tectures à la MOF [102]. After Martin Fowler [99], one argument used in favor of MDA were

that it makes it possible to use Domain Specific Languages (DSL) (section 4.4.3). How-

ever, he doubts a success of the MDA. And indeed, although some MDA standards like the

UML are very sophisticated and widely used, it is still unclear whether the MDA, due to its

complexity, will be able to infiltrate daily software business.

But the idea of separating Application Knowledge (PIM) from its hardware-close Control and

Processing (PSM) clearly brings a new quality into software development and is important

for later investigations in this work (chapter 6).

4.4.7 Model and Code

The knowledge abstraction- and implementation techniques considered in the previous sec-

tions belong to the current state-of-the-art in software design and -modelling, with focus on

Domain Engineering (DE). Despite some exceptions like the Feature Model (section 4.4.4),

which supports the mapping between abstractions of the analysis- and design phase, most

described techniques deal with bridging the gap between design models and source code.

Alan Brown writes [35]: One useful way to characterise current practice is to look at the

different ways in which the models are synchronized with the source code they help describe.

Figure 4.45 shows the spectrum of modelling approaches in use today. The different cate-

gories [35] are:

Code Only

- almost entire reliance on the code

- informal and intuitive modelling of architectural designs

- models living on whiteboards, in presentations or the developers’ heads

134 4 Logical Architecture

code

code

only

what is

a model?

model

model

only

let's do

some design

model

code

code

visualisation

the code

is the model

model

code

roundtrip

engineering

code and

model coexist

model

code

model-

centric

the model

is the code

Figure 4.45: Model-Code Synchronisation [35, diagram by John Daniels]

- possible use of an Integrated Development Environment (IDE)

Code Visualisation

- alternative modelling using a graphical notation

- diagrams aid the understanding of the code’s structure or behavior

- visual renderings become a direct representation of the code

- simultaneous display of code view and model view using Computer Aided Software

Engineering (CASE) tools

Roundtrip Engineering

- bidirectional exchange between abstract design model and implementation code

- manual model-to-code transformation, and vice-versa

- frequent iterations as errors are detected

- considerable discipline necessary to keep models synchronized

- automated recognition of generated versus user-defined code by Roundtrip Engineer-

ing (RTE) tools (for example by placing markers in the code)

4.5 Knowledge Engineering 135

Model Centric

- sufficiently detailed system models enable the generation of full system implementa-

tions

- models include representations of persistent- and non-persistent data, business logic,

presentation elements and more

- interfaces to legacy systems and various services

- specialized tools generate particular (constrained) styles of applications, in an auto-

mated process

Model Only

- models aid the understanding of a business domain, or the analysing of a proposed

architecture

- models used as basis for discussion, communication and analysis among project teams

within- or across organisations

- establishment of a shared vocabulary and set of concepts among disparate teams

- model-disconnected (outsourced) implementation of systems

Considering the developments of the last decades but especially recent years, the modelling

trend clearly goes left-to-right, with respect to figure 4.45, that is from Code only- to more

Model-centric approaches. The emerge of the Model Driven Architecture (MDA) (section

4.4.6) is one sign therefore. Yet although these efforts certainly contribute to easier and faster

development, less inter-dependencies within systems, better documentation and clearity of

source code, improved maintenance and more – the gap between Design- and Implementation

phase, within a Software Engineering Process (SEP) (chapter 2), remains. By introducing

a new knowledge schema (chapter 7), this work wants to conclusively close gap number 2

(with respect to figure 2.6 of section 2.6) and provide a model-only approach.

4.5 Knowledge Engineering

In order to correctly perform information input, memorising, processing and output, sys-

tems need to know about the structure of the data they are processing. While pure Data

136 4 Logical Architecture

abstract the real world in form of (mostly machine-readable) characters (quality) and num-

bers (quantity) (more on this in chapter 7), their interpretation in a semantic context may

yield Information. What coincides across the many different definitions [60] of the term

Information, are two statements: it has to be recognisable and: it has to contain something

new. Organised information available in form of specific structures with inter-relations is

often called Knowledge.

Quite often, knowledge gets shared into two kinds: explicit (codified) and implicit (tacit).

While the former, after [221], referred to knowledge that is transmittable in formal, sys-

tematic language, the latter had a personal quality, which made it hard to formalise and

communicate. This work is about explicit knowledge; it wants to provide concepts and

schemata for expressing it as completely as possible (part II).

Over the years, many different Knowledge Representation models have been proposed. In

software engineering, they represent different kinds of user interfaces (textual, graphical,

web), workflows, persistent- or transient data. The biggest importance, however, models

experience when representing a complete Domain (section 4.2.1), that is the special busi-

ness field an application system was developed for. After John F. Sowa [294], Knowledge

Engineering (KE) could be defined as: the branch of engineering that analyses knowledge

about some subject and transforms it to a computable form for some purpose.

It has to be mentioned that the borders between Domain Engineering (DE) (section 4.4)

and Knowledge Engineering are quite blurry. The Feature Model (section 4.4.4), although

described as part of DE, can of course also be seen as one form of knowledge representation,

just like many other models. Both, DE as well as KE specify formal languages and investigate

how different models can be translated into each other. This work, however, makes a split

between DE and KE, because:

- their topics are usually treated as different fields of science

- KE’s focus is almost exclusively on representing (domain) knowledge in models

- DE also considers their relation to the applications working on them

- DE distinguishes models belonging to different phases in a Software Engineering Pro-

cess (SEP)

- DE describes concrete implementation techniques

The following sections try to give a brief overview of the rather wide field of knowledge

representation and -engineering, raising only a few topics. Their main intention is to show

4.5 Knowledge Engineering 137

the existence of two different kinds of knowledge: Date and Rule, both of which can be

structured according to an ontology, what will be dealt with in the later chapters 7 and 8.

4.5.1 Representation Principles

Randall Davis, Howard Schrobe and Peter Szolovits (1993), cited by Sowa in [294, p. 134],

summarise their review of the state-of-the-art in knowledge engineering in form of five Basic

Principles. To them, a knowledge representation is a:

1. Surrogate: symbols and the links between them, which form a model that simulates

a system, serve as surrogates of physical items → chapter 6 will distinguish between

virtual models (symbols) and real world (physical) items

2. Set of ontological commitments: an ontology determines the categories of things that

may exist in an application domain → chapter 7 will introduce a knowledge schema

permitting to apply an ontological structure to data

3. Fragmentary theory of intelligent reasoning: a description of the behaviour and in-

teractions of things in a domain supports reasoning about them → chapter 8 will

separate state- and logic (behavioural) knowledge

4. Medium of human expression: a language facilitates communication between knowl-

edge engineers and domain experts → chapter 9 will define a language for knowledge

specification

5. Medium for efficient computation: encoded knowledge ensures efficient processing on

computing equipment → chapter 10 will describe a low-level interpreter that processes

high-level knowledge

4.5.2 Date and Rule

Two kinds of systems that gained greater popularity are Expert Systems and Relational

Databases. After Sowa [294], both differed more in quantity than in quality: Expert systems

use repeated executions of rules on relatively small amounts of data, while database systems

execute short chains of rules on large amounts of data. Over time, their differences decreased

and today, the Structured Query Language (SQL) for relational databases supports the same

logical functions as early expert systems.

138 4 Logical Architecture

Both, expert systems and relational databases, have common logical foundations and store

data in a subset of logic called Existential Conjunctive (EC) logic. EC is based on two logical

operators: the Existential Quantifier ∃ and the Conjunction ∧; the Universal Quantifier ∀
and other operators (∼, ⊃, ∨) are never used. Sowa [294, p. 163] writes: While variables

in a query are governed by existential quantifiers, those in a rule are governed by universal

quantifiers.

The two primary inference rules of the above-mentioned systems are called Modus Ponens

(putting) and Modus Tollens (taking away). Although being simple, the power of these rules

comes from their combination and repeated execution. While repeated execution of modus

ponens is called Forward Chaining, that of modus tollens is called Backward Chaining. In

SQL, an implication used in backward chaining is called View, and that used in forward

chaining is called Trigger [294].

Besides Prolog (section 4.1.10) and SQL (section 4.1.11), the Microplanner language [294,

p. 157] uses the so-called Backtracking technique to answer a query: If one of a sequence

of aims cannot be satisfied, the language tracks back to a previous aim and tries a different

option. Although equivalent queries in Prolog and SQL differ in their syntax, the semantics

is the same. Logic determines the structure of a query, as Sowa [294, p. 159] means.

To sum up, one can say that previous sections distinguished between Domain- and Appli-

cation Models. What was shown in this section, however, is that many systems and their

corresponding languages rely on a separation of Data (in state variables) and Rules (logic).

This will be of importance in chapter 8.

4.5.3 Agent Communication Language

A whole palette of languages was suggested within the scientific field of Artificial Intelligence

(AI). Agent Oriented Programming (AGOP) (section 4.3.7), for example, uses representation

formats like the ones described following, for the knowledge bases and communication of its

agent systems. That is why such formats are often labeled Agent Communication Language

(ACL).

Knowledge Interchange Format

The Knowledge Interchange Format (KIF), as described in [111], is:

4.5 Knowledge Engineering 139

- a language designed for use in the interchange of knowledge among disparate computer

systems

- not intended as a primary language for interaction with human users

- not intended as an internal representation for knowledge within computer systems

- in its purpose, roughly analogous to PostScript (PS) (section 4.1.13)

- not as efficient as a specialised representation for knowledge, but more general and

programmer-readable

The idea behind KIF is that [111]: a computer system reads a knowledge base in KIF, (and)

converts the data into its own internal form (pointer structures, arrays, etc.). All computa-

tion is done using these internal forms. When the computer system needs to communicate

with another computer system, it maps its internal data structures into KIF. KIF’s design

is characterised by three features:

1. Declarative Semantics: independent from specific interpreters, as opposed to e.g.

Prolog

2. Logically Comprehensive: may express arbitrary logical sentences, as opposed to SQL

or Prolog

3. Meta Knowledge: permits the introduction of new knowledge representation con-

structs, without changing the language

The following syntax example [111] shows a logical term involving the if operator. If the

object constant a denotes a number, then the term denotes the absolute value of that

number:

(if (> a 0) a (- a))

The language introduced in chapter 9 may not only serve as interchange format between sys-

tems, but also for the definition of user interfaces, workflows and domain models, altogether.

It treats state- and logic models as separate, composable concepts (chapter 8), which KIF

does not. Further, it provides the means to express meta knowledge.

Knowledge Query and Manipulation Language

The Knowledge Query and Manipulation Language (KQML) [87] is a: language and associ-

ated protocol by which intelligent software agents can communicate to share information and

140 4 Logical Architecture

knowledge, as Tim Finin et al. [88] write. Its syntax were based on a balanced parenthesis

list, because initial implementations had been done in Common Lisp (CL) [227]. After Finin

et al., the initial element of the list were the Performative and the remaining elements were

the performative’s Arguments as keyword/ value pairs. The Free Wikipedia Encyclopedia

[60] explains:

The KQML message format and protocol can be used to interact with an in-

telligent system, either by an application program, or by another intelligent

system. KQML’s Performatives are operations that agents perform on each

other’s Knowledge and Goal stores. Higher-level interactions such as Contract

Nets and Negotiation are built using these. KQML’s Communication Facilita-

tors coordinate the interactions of other agents to support Knowledge Sharing.

An example message representing a query about the price of a share of IBM stock might be

encoded as [88]:

(ask-one

:content (PRICE IBM ?price)

:receiver stock-server

:language LPROLOG

:ontology NYSE-TICKS)

System communication and its elements like Sender, Receiver, Language or Message Content

will be further investigated in chapter 8. The new language introduced in chapter 9 defines

communication operations (logic) accompanied by properties (meta information), much the

same way performatives have arguments. Also, that new language may not only be used

to encode knowledge for communication, but to represent knowledge of arbitrary domains.

By combining pre-defined, primitive operations, it may be used to create more complex

(higher-level) algorithms.

DARPA Agent Markup Language / Ontology Inference Layer

The DAML+OIL language resulted from a combination of the DAML and OIL languages.

The DARPA Agent Markup Language (DAML) [114] was created in a project run by the

Defense Advanced Research Projects Agency (DARPA) of the United States of America

(USA); the Ontology Inference Layer (OIL) was created within the Information Science

Technologies (IST) program of the European Union (EU) [332]. Both projects aimed at

4.5 Knowledge Engineering 141

developing a language and tools to facilitate the concept of the Semantic Web (section

4.5.4).

At the beginning of the project stood the realisation that: The use of ontologies (section 4.6)

provides a very powerful way to describe objects and their relationships to other objects. The

DAML+OIL language, being developed as an extension to the Extensible Markup Language

(XML) (section 4.1.12) and the Resource Description Framework (RDF) (section 4.5.4),

therefore provided a [348] rich set of constructs with which to create ontologies and to

markup information so that it becomes machine-readable and understandable. Much of the

work in DAML and OIL has now been incorporated into OWL (section 4.5.4).

Chapter 9 will introduce a language that is based on XML, too.

4.5.4 Semantic Web

As mentioned in section 4.1.12, the Extensible Markup Language (XML) [332] provides a:

set of rules for creating vocabularies that can bring structure to both documents and data

on the Web and it: gives clear rules for syntax. XML Schemas [295] served as: a method

for composing XML vocabularies. Yet although XML were a powerful, flexible surface

syntax for structured documents, it imposed no Semantic Constraints on the Meaning of

these documents. Having investigated the usefulness of XML for a meaningful sharing of

information units at the semantic level, Robin Cover writes [65]:

. . . the use of XML for Data Interchange may already outweigh its use for

Document Display. For messaging and other transaction data, specifications

approaching the level of formal semantics (e.g. KIF or KQML) are desirable,

governing not just common (atomic) data types in business objects, but complex

objects used by computer agents in large-scale business transactions. XML

vocabularies supporting these applications will need to be defined in terms of

precise object semantics.

He lists a number of efforts dealing with the support for generic XML semantics, that

is Semantic Transparency of XML in a broader sense, to provide unambiguous semantic

specification:

- XML Data [191]

- Document Content Description (DCD) for XML [34]

142 4 Logical Architecture

- Schema for Object Oriented XML (SOX) [69]

- XML Metadata Interchange (XMI) [236]

- Resource Description Framework (RDF) [348]

- Web Ontology Language (OWL) [349]

The RDF and OWL as well-known efforts are mentioned in the following two subsections.

Both are often comprised under the umbrella term Semantic Web. Much of what is written

about the semantic web sounds as if it was a replacement technology for the Web as known

today. Yet Eric Miller, leader of W3C’s semantic web activity, means [332]:

In reality, it’s more Web Evolution than Revolution. The Semantic Web is made

through incremental changes, by bringing machine-readable descriptions to the

data and documents already on the Web. XML, RDF and OWL enable the

Web to be a global infrastructure for sharing both, documents and data which

make searching and reusing information easier and more reliable as well.

Resource Description Framework

The Resource Description Framework (RDF) [348] as part of the Semantic Web provides

a standard way for simple descriptions to be made. It is: a simple data model for referring

to objects (resources) and how they are related. An RDF-based model can be represented in

XML syntax. [60]

RDF wants to achieve for Semantics what XML has achieved for Syntax – to provide a clear

set of rules for creating descriptive information. Both follow a special schema, RDF Schema

[348] and XML Schema [295], respectively, which defines the structure and vocabulary that

may be used in the corresponding documents.

Many applications that use XML as syntax for data interchange, may apply the RDF spec-

ifications to better support the exchange of actual knowledge on the web. The RDF data

framework is used [332] in: asset management, enterprise integration and the sharing and

reuse of data on the web. Example applications combining information from multiple sources

on the web [332] include: library catalogs, world-wide directories, news- and content aggre-

gation, collections of music or photos.

In the words of Brian McBride [332], chair of the RDF core working group, his group had:

turned the RDF specifications into both a practical and mathematically precise foundation

4.6 Conceptual Network 143

on which OWL and the rest of the semantic web can be built.

Chapter 9 will come back to RDF once more, and compare it with the new language then

introduced.

Web Ontology Language

The Web Ontology Language (OWL) is [349]: a semantic markup language for publishing

and sharing ontologies on the world wide web . . . which delivers richer integration and in-

teroperability of data among descriptive communities. It uses Uniform Resource Indicators

(URI) for naming and is an extension of the Resource Description Framework (RDF), adding

more vocabulary for describing properties and classes, for example relations between classes,

cardinality, richer typing of properties, or enumerated classes. OWL was originally derived

from the DARPA Agent Markup Language + Ontology Inference Layer (DAML+OIL) web

ontology language (section 4.5.3).

In the understanding of OWL, an ontology is a subject- or domain specific vocabulary which

defines the terms used to describe and represent an area of knowledge [332]. However, there

are other definitions of the term Ontology which are given in section 4.6. OWL aims to add

to ontologies capabilities like [332]:

- Ability to be distributed across many systems

- Scalability to web needs

- Compatibility with web standards for accessibility and internationalisation

- Openness and extensibility

It introduces keywords for the use of Classification, Subclassing with Inheritance and further

abstraction principles. RDF is neutral enough to permit such extensions. Also the language

introduced in chapter 9 may be extended with meta properties, such as one for inheritance.

4.6 Conceptual Network

John F. Sowa [294] cites the computer science pioneer Alan Perlis who, being asked whether

a computer could automatically write programs from informal specifications, replied: It

is not possible to translate informal specifications to formal specifications by any formal

algorithm. And Sowa writes on: English syntax is not what makes the translation difficult.

144 4 Logical Architecture

The difficulty results from the enormous amount of background knowledge that lies behind

every word.

The structuring of such knowledge is what Ontologies shall support. They are the topic

of the following sections and will be of importance for the knowledge schema introduced in

chapter 7.

4.6.1 Ontos and Logos

The word Ontology stems from ancient Greek language, consisting of the two subterms

Ontos and Logos which literally mean Stone (in the meaning of Being) and Word (in the

meaning of Study). Thus, ontology designates the study of the nature of reality.

Manifold, more detailed definitions are given in literature. They mostly relate to one of the

subjects, Philosophy or Information Technology (IT). A philosophical one that can be found

in Smith and Welty [289] says: Ontology is the science of what is, of the kinds and structures

of objects, properties, events, processes and relations in every area of reality. Since what it

means for something to be or to be real were an issue beyond what is physically accessible,

as Daniel [68] writes, ontological questions were metaphysical. Metaphysics included not

only the study of being and reality but also the study of specific kinds of beings, such as

minds. Metaphysics in general and ontology in particular were both interested in providing

a Logos, a rational explanation for existence. The Dictionary of Philosophy of Mind [78], as

further source, states:

Although the term terms Ontology and Metaphysics are far from being univocal

and determinate in philosophical jargon, an important distinction seems often

enough to be marked by them. What we may call ontology is the attempt to

say what entities exist. Metaphysics, by contrast, is the attempt to say, of those

entities, what they are. In effect, one’s ontology is one’s List of entities, while

one’s metaphysics is an explanatory theory about the Nature of those entities.

Besides rather philosophical descriptions, Eric Little [199] also quotes a more information

science-like definition of Gruber [118] for whom an ontology is an: explicit specification of a

conceptualization (of a domain), in other words a formalisation of domain knowledge. For

the Ontology Forum [116], the key ingredients that made up an ontology were a vocabulary of

basic terms and a precise specification of what those terms mean. The Agent Communication

Languages (ACL) and Semantic Web technologies, introduced in sections 4.5.3 and 4.5.4,

4.6 Conceptual Network 145

respectively, use ontologies in the same meaning. The borders to Terminology (section 4.6.5)

are often blurry.

The knowledge schema and new language of chapters 7 and 9 may represent entity infor-

mation (an ontology) as well as meta information about these (metaphysical explanations).

However, in order to avoid conflicts with philosophy, this work sticks to Gruber’s definition

of the term Ontology, for the time being, until it defines it in its own way, in chapter 7.

4.6.2 Applicability

The Ontology Forum [116] writes that ontologies find applicability in many areas of infor-

mation systems engineering, for example in database design, in object systems, in knowledge

based systems and within many application areas such as datawarehousing, knowledge man-

agement, computer supported collaborative working and enterprise integration. Depending

on the nature of the knowledge they were concerned with, communities would differ:

- Artificial Intelligence (AI): ontologies capture domain knowledge, while problem-

solving methods capture task knowledge

- Natural Language: ontologies characterise word meaning and sense

- Database: ontologies, as conceptual schema, provide semantic inter-operability of

heterogeneous databases

- Object Oriented Design Methods: ontologies, as domain models, specify software sys-

tems that need not be knowledge-based

Sections 4.5.3 and 4.5.4 mentioned the use of ontologies for semantic-based information

retrieval. What (conceptually) unites these communities, is the ability of ontologies to

reduce semantic ambiguity for the purpose of sharing and reusing knowledge, to achieve

inter-operability. In the context of this work, ontologies are mainly used to structure domain

knowledge meaningfully, in levels of growing granularity, with unidirectional relations from

higher-level layers to layers of lower granularity (chapter 7).

4.6.3 Two Level Separation

Although there appears to be no standard knowledge classification, a Two Level Separation

of ontologies is often described, as for example in [118]:

146 4 Logical Architecture

At the First Level, one identifies the basic conceptualizations needed to talk

about all instances of . . . some kind of Process, Entity etc. For example, the

first level ontology of Causal Process would include terms such as Time Instants,

System, System Properties, System States, Causes that change States, Effects

(also States) and Causal Relations.

At the Second Level, one would identify and name different types of (a process)

and relate the Typology to additional constraints on or types of the concepts in

the first-level ontology. For the causal process example, we may identify two

types of causal processes, Discrete Causal Processes and Continuous Causal

Processes and define them as the types of process when the time instants are

discrete or continuous, respectively. These terms and the corresponding concep-

tualizations are also parts of the ontology of the phenomenon being analyzed.

Second-level ontology is essentially open-ended: that is, new types may be iden-

tified any time.

The Design Principles for the EHR document [20] writes that a separation of this kind di-

vided knowledge types into a Foundation Level (or what is called an Ontology of Principles)

which could be numbered Level 0 and Everything else. Knowledge in the latter category

were more specific to particular uses and users. It could be divided into a number of sub-

levels (according to various types of use) which could be numbered as Level 1 to Level N.

Concepts in levels 1 to N represented particular compositions of elements from the principles

level into structures, similar to the way atoms are composed into molecules.

Knowledge encoded in the new language introduced in chapter 9 is based on state primitives

(commonly known as Primitive Types in classical programming languages) and logic primi-

tives (operations), both of which could be assigned to the first ontological level as mentioned

above. Any knowledge template defined in that language is a composition consisting of these

primitives and/ or other compound templates.

4.6.4 Building Blocks

As for the word Ontology, there are differing definitions for the meanings of the words used

in the field of Terminology. The ones given in [162] differ only slightly from those of Jeremy

Rogers, who has assembled a very useful website [276]. The following explanations are based

on it. They are necessary background knowledge for the investigations on Human Thinking

and the relations within the new knowledge schema introduced in chapter 7.

4.6 Conceptual Network 147

An elementary building block is the word Term, which is a word or phrase (many words)

labelling some idea. Another word for idea is Concept. Commonly distinguished concepts

are:

- Primitive Concept (Atomic): cannot be completely expressed in terms of other con-

cepts

- Composed Concept: can be expressed in terms of other concepts

- Pre-coordinated Concept (Composed): has position in concept system that gets de-

termined before the concept is supplied to end users

- Post-coordinated Concept (Composed): did not exist in the concept system as deliv-

ered to the user

Special kinds of terms are:

- Synonym: two different terms that mean the same thing

- Homonym: two terms that sound the same but are spelled differently

- Eponym: a term that includes a proper name (like Murphy’s Law)

Concepts can be related to each other by a Link. Flavours of Semantic Links are:

- IS-KIND-OF: diabetes is-a disease

- IS-PART-OF: upper limb has-a hand

- CAUSES: smoking causes cancer

A Code is an abstract identifier for either a link, or a concept or a term. Rogers [276] writes

on this:

If the concepts and the terms in a system are represented separately, then each

concept and each term are unique. Therefore, each can have a unique code

assigned to it. By this mechanism, a single concept may be associated with

more than one term (e.g. synonyms or foreign language translations) and a

given term might be associated with two quite different concepts (homonyms

e.g. cool meaning cold and cool meaning groovy).

The language introduced in chapter 9 has primitive concepts (state- and logic primitives,

as mentioned in the previous section) and it can express composed concepts. Knowledge

148 4 Logical Architecture

templates defined in that language represent pre-coordinated concepts which become post-

coordinated knowledge models when instantiated and altered at runtime. Only IS-PART-OF

relations (links) are of importance in the language. Knowledge templates written in it can

hold many different codes, may they be part of various terminologies or translations into

foreign natural languages.

4.6.5 Terminology

While a Lexicon is a list of pure words, a Terminology (sometimes called Vocabulary) can

also contain phrases. Because it is a fixed list of lots of terms, a terminology should exclude

any link to a separate list of concepts. When a terminology contains additional instructions

describing how to interpret each term, or dictating when to choose one over another (priori-

tisation), it may be called a Nomenclature. The knowledge schema proposed in this work

(chapter 7) shall be capable of storing codes of various terminology systems.

Lexicon and terminology stand for a Set of words or terms, respectively. To bring some

structure into such a set, terms or concepts need to be ordered, that is organised through a

system of links, into a Hierarchy, which Rogers [276] defines as a:

. . . tree-like structure, where things at the top of the tree are in some way

more general or abstract than the things lower down. The nature of each link

between each level in the tree may be explicit or only implied, and more than

one flavour of semantic link can be used to build the tree (in which case it may

be called a Mixed Hierarchy).

Kinds of hierarchies, as means of organisation, are:

- Subsumption Hierarchy (Classification, Taxonomy): only is-a relationships exist be-

tween parent-child pairs in the tree

- Uniaxial Hierarchy: each concept only ever has one parent, though it can have more

than one child

- Multiaxial Hierachy: each concept can have more than one parent as well as more

than one child

- Exhaustive Multiaxial Hierarchy: all concepts have all the parents as well as all the

children they should have

As organisation Rules count:

4.6 Conceptual Network 149

- Formalism: an explicitly expressed set of rules, like the specification for how to tell

what should (not) be a parent of a concept

- Concept System (Model): a system of Symbols that stand in for concepts and/ or

the links between them, and which may or may not be intended to be processed with

reference to some formalism

- Partonomy (Mereology): a system of concepts and links intended to represent whole-

part relationships specifically

On a yet higher abstract level, a Data Structure may hold organisations of concepts. Various

types of data structures are:

- Network : a mesh-like structure that connects terms or concepts using links; a hierar-

chy can be thought of as simple case of a network

- Graph: a network

- Directed Graph: a network in which each link has a Direction

- Directed Acyclic Graph (DAG): a directed graph free of loops

A knowledge template expressed in the language that will be defined in chapter 9 describes

an uniaxial hierarchy, that is its sub concepts have just one parent node. Its structure follows

the partonomy (mereology) organisation rules and represents a DAG.

4.6.6 Schemes

One of the – if not the most complex domain in which terminologies are applied is Healthcare.

As announced in section 1.6, it will serve as example domain for many ideas presented in

this work – so for this section describing various organisation schemes for terminologies. The

later chapter 11 will come back to this topic once more and briefly introduce a number of

terminology systems for healthcare. Jeremy Rogers writes about health terminology [275]:

Health terminology is complex and multifaceted, more so than most language

domains. It has been estimated that between 500,000 and 45 million different

concepts are needed to adequately describe concepts like conditions of patients

and populations, actions in healthcare and related concepts, such as biomedical

molecules, genes, organisms, technical methods and social concepts.

150 4 Logical Architecture

The system itself can, for example, be called an ontology, medical entity dictio-

nary, coding- and reference model or reference terminology. The differences in

terminology are understandable – this kind of work is highly interdisciplinary

and integrates knowledge from linguistics, philosophy, informatics and health

sciences, and there is room for misunderstanding between disciplines.

After him [276], there were three broad families of technical approaches to terminologies:

Enumerative Scheme, Compositional Scheme and Lexical Scheme. These are explained in

the following subsections, mostly citing freely after Rogers [276]. The language defined in

chapter 9 might possibly be suitable for creating terminologies following an enumerative- or,

better yet, compositional scheme.

Enumerative Scheme

An Enumerative Coding Scheme lists, within the scheme, all phrases ever to be used, and

gives each of them its own code for reference. The phrases can be very long and detailed.

The list of phrases provided is finite, and it is fixed.

A very familiar example of an enumerated scheme is the traditional taxonomic classification

of the animal kingdom (figure 4.2). Most of the existing medical terminologies, listing names

of diseases, of surgical operations and the like, are also enumerative. One example is the

International Classification of Diseases (ICD) (chapter 11).

After [276], attempting to enumerate in advance all useful phrases inevitably encounters two

serious problems concerning the Scale and Organisation. Terminologies become:

1. Scale: too big to maintain, which results in inconsistent data that cannot be analysed

anymore

2. Organisation: pre-categorised, which does not allow terms to be simultaneously placed

under all different categories that are valid

A further limitation is caused by unfavourable technical choices. The code often serves two

purposes. It is: the unique identifier of a concept and the means of representing the relative

organisation of a concept. So the common practice of restricting the physical length of a

code also restricts the levels of organisation.

4.6 Conceptual Network 151

 level

 domain

 kingdom

 phylum

 subphylum

 superclass

 class

 subclass

 order

 family

 genus

 species

 name characteristics

 eukarya nucleus, organelles

 animalia ingests food, multicellular, no cell wall

 chordata spinal cord

 vertebrata segmented backbone

 tetrapoda four limbs

 mammalia nurse offspring

 theria live birth

 primates high level of intelligence

 hominidae walk upright

 homo human

 homo sapiens modern human

Table 4.2: Taxonomic Classification of the Animal Kingdom

Compositional Scheme

A Compositional Conceptual Scheme typically contains a controlled and fixed list (Dictio-

nary) of a relatively small number (a few ten-thousand) of primitive terms, each of which

can have a unique code. These primitives may be combined together by users to form more

complex terms, including those which might be found in an existing enumerative scheme

but also other, sometimes trivial, variations and expansions [276].

Examples of compositional schemes include the Generalised Architecture for Languages, En-

cyclopaedias and Nomenclatures in Medicine (GALEN) and the Systematized Nomenclature

of Medicine (SNOMED). Hybrid enumerative-compositional schemes are Logical Observa-

tion Identifiers, Names and Codes (LOINC) and the International Classification of Nursing

Procedures (ICNP).

The sheer unlimited number of possible combinations, when seen as a problem, is called

Combinatorial Explosion. Much worse problems, however, are the:

152 4 Logical Architecture

- Nonsense combinations that may be constructed (avoidable with a set of semantic

links, a grammar and constraints)

- Redundancy which occurs when more than one combination of terms express the same

concept (avoidable with formal algorithms helping to identify redundant compositions)

- Post-hoc Classification (unforeseeable addition of new, unknown concepts) that may

prevent a meaningful data analysis (avoidable with a type hierarchy of primitives and

of semantics links)

- Intractability of data due to exploding computer algorithms so that the computer will

never find an answer

Lexical Scheme

A Lexical Technique is one that helps compare phrases based on what they appear to say –

on which words appear, in which order, and in what grammatical constructs – rather than on

what they might or might not actually mean. Such techniques can provide a powerful (but

not 100% accurate) method for mapping between phrases in existing schemes, or between

such phrases and the text found in papers, the World Wide Web (WWW) or other electronic

resources.

One example of a lexical scheme is the Unified Medical Language System (UMLS).

Where lexical techniques break is when the language gets more slippery, that is ambiguities

may occur. Humans might interpret such results correctly, but automated decision support

systems would fail. Rogers [276] concludes that: As an input for autonomous machine

processing applications such as decision support, the outputs of natural language processing

tools remain unsuitable.

4.6.7 Ontology

The aforementioned building blocks (sections 4.6.4 and 4.6.5) can be combined to form new

kinds of abstraction [276], as there are:

- Coding Scheme: a terminology in which each term also has a code

- Classification: a terminology and system of codes and hierarchy

4.6 Conceptual Network 153

- Thesaurus: a classification using a mixed hierarchy (IS-KIND-OF or IS-PART-OF

links)

- Ontology: a system of concepts linked to a terminology

An Ontology, as system of concepts (section 4.6.1), provides a set of constructs that can

be leveraged to build meaningful higher-level knowledge. The relationships between con-

cepts are defined using formal techniques, and provide richer semantics than a classification.

Thomas Beale writes [19]:

Ontologies are about representation of knowledge and in their most general

form, they may have a definition of the atoms (basic constructs). But what

they are really made of is semantic links, that is any atom is really defined by

its relation to everything else – just like natural language . . . real ontologies are

more like a sponge or vast octopus-like network of links and concepts – not just

atoms.

Chapter 7 will describe a knowledge schema with ontological structure, in other words a

hierarchical one with unidirectional relations and additional meta information.

4.6.8 Archetype

With the aim of providing the means to build usable, maintainable, extensible Electronic

Health Records (EHR), the Archetype as design concept was introduced in the Design Prin-

ciples document of the Good European/ EHR (GEHR) project, which was later renamed

into Open EHR [22]. Their website states: An archetype is a re-usable, formal model of

a domain concept. Archetypes adhere to ontological principles; they can be composed of

other archetypes or atomic elements. Their use is not limited to EHR building, despite

OpenEHR’s focus on the medical domain.

Comparing archetypes with terminologies, Beale [19] writes that a terminology like for ex-

ample SNOMED Clinical Terms (SNOMED CT) had the form of a semantic network, i.e.

. . . with an ontological flavour. However, because rigorous design principles were not al-

ways applied, they tended to be internally inconsistent and had a lot of pre-coordination

in them, while what was really needed was a generative/ compositional terminology. Fur-

ther, SNOMED could tell what the meanings of the parts of e.g. a complete blood count

test are, but it were not going to provide a model of an actual blood test. This is where

archetypes . . . would come in; they were about information in use, not definitions of reality

154 4 Logical Architecture

(as terminologies). . . . So – even if SNOMED was perfect, it wouldn’t do everything. It

were a knowledge support part of the environment, and it could be used to name things and

perform inferencing (draw a conclusion/ deduction [212]).

An Archetype Definition Language (ADL) [21] was created for the specification of archetypes.

A corresponding ADL document has the following structure:

archetype_id = <"some.archetype.id">

adl_version = <"2.0">

is_controlled = <True>

parent_archetype_id = <"some.other.archetype.id">

concept = <[concept_code]>

original_language = <"lang">

translations = <

...

>

description = <

...

>

definition = <

cADL structural section

>

invariant = <

assertions

>

ontology = <

...

>

revision_history = <

...

>

Many separate sections can be identified in this archetype structure, and various syntaxes are

used for them. Table 4.3 gives an overview of the structural elements of an ADL archetype.

In addition to the single sections, it mentions two further syntaxes, for templates and con-

straints on data instances.

Chapter 9 will define a new language that is based on just one syntax: the Extensible Markup

Language (XML) (section 4.1.12), an easy-to-grasp pure text format. Despite its limited

vocabulary of just four tags and four attributes, that language may encode a rich set of

knowledge constructs, including meta information and constraints.

4.6 Conceptual Network 155

Element Syntax Purpose

archetype structure Archetype Definition

Language (ADL)

glue syntax

definition section Constraint Form of

ADL (cADL)

constraints definition

description, ontology

and other sections

Data Definition Form

of ADL (dADL)

data definition

template Template Form of ADL

(tADL)

formalism to compose archetypes

into larger constraint structures,

used in particular contexts at run-

time

data instances First Order Predicate

Logic (FOPL)

constraints on data which are in-

stances of some information model

(e.g. expressed in UML)

Table 4.3: Structural Elements of an ADL-defined Archetype [21]

4.6.9 Dual Model Approach

The idea of archetypes was inspired by Martin Fowler’s Analysis Patterns [97] describing

a kind of ad hoc two-level modelling, using a Knowledge Level and Operational Level – as

described by the Reflection pattern (section 4.2.1), which calls the two levels Meta Level and

Base Level, respectively. Fowler tried to put as much general domain knowledge as possible

into the meta level, in order to make application systems more flexible, and to remove

unnecessary dependencies. Archetypes represent what would traditionally have been put

into the knowledge (meta) level.

Because an Archetype Model (AM) (defined in form of ADL documents) and its runtime

instances constrain a Reference Model (RM) and its instances (figure 4.46), development

with archetypes is called the Dual Model Approach [22]. Archetypes represent the knowledge

belonging to the meta level; the reference model contains information belonging to the base

level. RMs are domain-invariant, i.e. the concepts expressed in the base models mean the

same thing right across the domain. [19, Beale]

The difference between the dual model approach and classical meta architectures is that

the latter implement both, meta- and base level using the same technology (language).

Archetypes, on the other hand, use the ADL for specifying knowledge. Further, the AM

does not depend on the RM, as opposed to meta architectures, where both models depend

156 4 Logical Architecture

Figure 4.46: Dual Model Approach [18]

on each other bidirectionally. Ergo, the dual model approach is rather comparable to Agents

(section 4.3.7) owning a mental state (knowledge base).

There are unclear views on what exactly should be constrained when. Sam Heard [19] writes

about an Archetype Kernel – a tool that could help build (knowledge instances) and ensure

that (they) comply to archetypes . . . It could operate at a range of points, at:

a write and edit time: allowing constraint of the data to be based on archetypes (meta-

data) rather than application specific processes;

b creation time of the application or schema: so that the application has read all in-

formation constraining the data as indicated – but not through interaction with the

archetype at runtime;

c persistence time: into a database or some other persistence means;

d communication time: such as when creating a model extract.

Besides obvious benefits of these approaches in constraining domain knowledge, there are a

number of potential problems, as Heard mentions:

a makes b and c redundant and allows the application to stay up to date with the

archetype development process; b makes c redundant (potentially) but means

4.6 Conceptual Network 157

code has to be cut to encorporate new archetypes; c and d mean that data

may be proved incompatible at a time later than data entry and this may lead

to other problems; d means you can carry on regardless but there is a risk

that data collected will not be compatible with models that are proposed for

interoperability.

Further weaknesses of archetypes, the ADL and dual model approach are:

- mix of meta information (properties, constraints) and hierarchical whole-part struc-

ture in ADL

- incomplete domain knowledge in ADL lacking logic (algorithms/ workflows) and user

interfaces

- inflexible structures due to runtime-dependency of RM instances from archetypes

- use of object-oriented concepts with all their limits, for RM as well as for AM instances

Although the OpenEHR project [22] claims archetypes to be both:

- domain-empowered: domain experts, rather than information technology people, be-

come able to directly define and manage the knowledge definitions of their systems;

- future-proof: systems can be deployed prior to having created formal knowledge mod-

els of the (entire) domain

. . . the above-mentioned issues prevent them from being so. The dual model approach in

conjunction with archetypes only partly fulfills the expectations of independent and com-

plete knowledge structures. CYBOP sets out to solve these issues and to find a truely

future-proof, long-life system architecture. Knowledge templates written in the language

described later in this work (chapter 9) may not only contain meta information constraining

application models (as archetypes do), they represent the application itself. The templates

themselves are constrained at design time through one universal knowledge schema (chap-

ter 7) dictating their structure. Runtime knowledge models do not reference the template

they were instantiated with (contrary to RM instances referencing their corresponding AM

instance); a CYBOP application holds all constraints directly in its knowledge models (run-

time instances). Since these models follow the structure of the singular knowledge schema

as well, they can be serialised easily what makes further constrain activities for persistence

or communication unnecessary.

158 4 Logical Architecture

4.7 Modelling Mistakes

While the previous chapters elaborated on Software Engineering Processes (SEP) (chapter

2) and the Physical Architecture of an Information Technology (IT) environment (chapter

3), the sections of this chapter discussed state-of-the-art solutions for designing and imple-

menting the Logical Architecture of software systems, that is their inner structure.

Computers can be controlled by Software. It contains the instructions after which a computer

is run. Instructions can be grouped into levels of growing abstraction, starting from low-level

Digital Logic, implemented in hardware, up to higher-level Problem Oriented Languages

(POL). The borders between hardware and software are fluent. Initially, it is up to the

computer constructor to decide whether functionality gets burned into hardware or coded

into software.

A set of computer instructions is known as Program; the language a computer program

is written in is known as Programming Language. While for early application systems, it

was acceptable to write programs directly in Machine- or Assembly Language, later tasks

required languages that were easier and faster to program. A palette of programming lan-

guages and -paradigms was introduced in section 4.1.

The more complex software requirements became, the better solutions had to be found to

cope with them. Unfortunately, the complexity of the requirements is often targeted with

equally complex design- and implementation techniques, leading to dependencies and high

coupling within a system. A whole variety of such techniques, more or less complex, exists

today and this chapter tried to investigate a rather big percentage of them, mentioning their

advantages but also trying to identify disadvantages. To the investigated concepts belong:

- Structure and Procedure; Class and Inheritance (section 4.1)

- Pattern and Framework (section 4.2)

- Component and Concern; Agent with Knowledge Base (section 4.3)

- Application and Domain; Model generated into Code (section 4.4)

- Date and Rule (section 4.5)

- Terminology and Ontology; Archetype and Dual Model (section 4.6)

Some of the identified disadvantages are already addressed and improved by existing tech-

nologies. The inflexible Static Typing (section 4.1.7), for instance, can be avoided with

4.7 Modelling Mistakes 159

Typeless Programming (section 4.1.8). However, there remains a number of design problems

to be solved, the main ones of which are listed following:

- Unpredictable behaviour due to container inheritance (section 4.1.15)

- Differing communication patterns due to wrong models (section 4.2.1)

- Bidirectional dependencies due to bad patterns (section 4.2.2)

- Global data access due to static methods (section 4.2.3)

- Redundant code or spread functionality due to concerns (section 4.3.5)

- Provision of a model-only approach to software development (section 4.4.7)

- Finding of a universal schema for knowledge representation (section 4.6.9)

Many of these are caused by Modelling Mistakes that will only turn out to be mistakes

while being compared with inter-disciplinary ideas in later chapters (part II). One aim of

this work is to improve software development by offering solutions to these problems. Yet

instead of further complicating software design and -implementation, it tries to bethink on

the elementary principle of programming, namely the: Abstraction of states and logic in

form of static knowledge, in order to dynamically control a computer system. More on this

in the following chapter.

5 Extended Motivation

Those who don’t have Courage to dream,

will not have Power to fight.

African Saying

The previous chapters of part I of this document investigated state-of-the-art concepts for

the development, physical- and logical architecture of software, and some of their good and

bad sides. The Suitability of these concepts for solving a problem, of course, heavily depends

upon the intended area of usage. This chapter introduces a new idea to software system

design that is as simple as it is helpful. It suggests to:

Inspect solutions of various other disciplines of science,

phenomenons of nature,

and apply them to software engineering

. . . in order to find out if existing weaknesses can be eliminated.

Taken as Extended Motivation for this work, the idea leads to a new perspective, from which

traditional concepts appear in a very different light. Former Strengths (like the bundling of

attributes and methods in an OOP class) may suddenly be considered a Weakness. Addi-

tionally, completely New Conceptual Solutions (like the unification of system communication

patterns) become possible. The merger of both, traditional and new concepts results in the

Cybernetics Oriented Programming (CYBOP), as defined in chapter 1.

A description of the intended Approach for applying inter-disciplinary concepts to software

system design finalises this chapter. Three topics that crystallise out here are Statics and

Dynamics, Knowledge Schema and State and Logic. They are explained together with their

parallels to science or nature in part II following afterwards, which represents the actual

Core of this document.

162 5 Extended Motivation

5.1 Idea

Researchers quite often follow the approach of first looking into what nature offers and then

trying to engineer a similar solution. All kinds of tools and machines were created this way,

even (and most obviously, with respect to the human body and mind) robots and comput-

ers. Some scientists take the principles of human awareness as physical model to explain the

Universe [274]. Some business people and consultants see analogies between processes in

the human brain and Organisational Structures of a Company [281]. Researchers in human

sciences systematise International Public Law by sharing it into the three parts Society, Co-

operation and Conflicts which are chosen in analogy to biology, that is Anatomy, Physiology

and Pathology of international relations [28].

Considering all that, one question is at hand: Why not apply a similar approach to software

engineering? If computers are built after the model of the human being (information input,

memorising, processing and output), why not structure the software that actually runs those

computers after similar models? It seems logical and clear, yet the reality looks different.

This work wants to change that, and thereby help to improve application programming.

In search for new concepts to structure software, other sciences are called in. The idea to

marry systems sciences (notably general systems theory and cybernetics) for analysis with

creative problem solving techniques of designers for synthesis is not new. Swift [73] for

example tried to apply both in form of Cyberpatterns to complex systems problems, using

a pattern language. Yet while Swift had turned his attention to what he calls the extreme

front end, this work goes one step further. It applies the principles of nature (results of

many different sciences) not only to the User Interface (frontend) of an application, but to

whole software system architectures.

Figure 5.1 shows some of the sciences whose principles were considered in this work. The

name of a field of science is shown on top of each box. Made observations are mentioned

below, in the middle. The resulting design recommendations for software can be found at the

bottom of each box. The recommendations are grouped into those that justify a separation

of Statics and Dynamics (left-hand side), a new kind of Knowledge Schema (lower part of

the figure) and a distinction between State and Logic models (right-hand side).

It has to be mentioned though, that only some of the principles underlying a specific field

of science were considered in the figure and in more detail later in this work. The figure

does by no means claim to be complete. The shown observations are only those that seemed

promising in the context of software design. The existence of persistent and transient data,

5.2 Recapitulation 163

s
o
ft

w
a
re

linguistics

quality & quantity

term & number

physics

dimensions

position information

psychology

recognition & thinking

knowledge schema

s
o
ft

w
a
re

neurology

sensoric & motoric

translator logic

social

communication

partner & language

automation

i/o data & control rules

state & logic

s
o
ft

w
a
re

philosophy

body & mind

system & knowledge

biology

cell separation & dna

static knowledge

informatics

persistent & transient

statics & dynamics

s
o
ft

w
a
re

statics & dynamics state & logic

knowledge schema

Figure 5.1: Mindmap of Sciences whose Principles influenced CYBOP

for example, is only one of many aspects of the science of informatics. Similarly is the

existence of sensoric and motoric nerve system just one aspect of the field of neurology. And

so on. Further details on the mentioned sciences and observations are not given here, since

later chapters will elaborate on them.

5.2 Recapitulation

The concepts that were found by considering other scientific disciplines, reveal a number of

state-of-the-art software design solutions that do not comply with their original in nature,

for example the:

1. Mix of static application knowledge and instructions for dynamic system control (chap-

ter 6)

2. False combination of information ignoring hierarchical structure and mixing in meta

information (chapter 7)

3. Bundling of state- and logic knowledge (chapter 8)

164 5 Extended Motivation

These discrepancies are the major reason for the issues mentioned in section 1.3. They

become clearer only later in this work (part II), where more background knowledge will be

provided. Almost all problems they cause have their root in Dependencies. As a system

grows, the inter-dependencies between its single parts grow with. Why does this happen?

Simply because a clear architecture is missing. Even if developers really try to follow a such

– on some point in the software’s lifetime, compromises have to be made due to unforeseen

requirements and dependencies:

- Meta Techniques are used to provide basic functionality

- Static Managers accessible by any other parts in the system are introduced

- Multiple Interfaces are implemented to realise new properties (Mix-In)

- Redundant Code needs to be written to avoid too many unwanted inter-dependencies

- Varying Mechanisms are applied to plugin new software layers

It seems that today’s software models rarely abstract the real world correctly. This is not

general critics on software development as it exists today, nor is it critics on the abilities

of application developers who use current concepts and languages. It is just the neutral,

unbiased realisation that there are a few concepts in use which cause unclear, unnecessary,

wrong dependencies within software systems. The application of principles of other scientific

disciplines might have the potential to solve that.

It was early that, in the style of Bionics, parallels between computing machines and the

human brain were seen, yet unfortunately do both not function in exactly the same manner.

Concepts like Artificial Neural Networks (ANN) that try to imitate the physical structure of

the human brain exist, but are today’s computers with deterministic behaviour not built like

that; they often have a von Neumann Architecture [250]. This forces human programmers

to adapt their thinking to the machine concepts.

Traditional programming languages and design solutions try to ease application development

by bridging the gap between concepts of human thinking and those of the machine. Software

developers are given tools to design programs in a more abstract way, independently from

the source code which gets generated later. But as long as the underlying concepts of

abstraction are insufficient, design problems are to be expected. The kind and quality of

abstractions is so important, because it influences – and is influenced by – all aspects of

software development (part I) dealing with Knowledge:

5.3 Approach 165

- the Software Engineering Process specifies static knowledge models (abstractions re-

sulting from process phases), to be later dynamically processed in a computer system

- the Physical Architecture requires the translation of knowledge models (communica-

tion) between systems

- the Logical Architecture provides the means to represent knowledge models (by lan-

guages and various techniques) within a system

They all, consciously or not, are trials to apply human patterns. The structure of knowledge

models, for example, is based on concepts of Human Thinking, the logical Mind – as opposed

to the above-mentioned neural networks that want to imitate the functioning of the physical

Brain. Because of the central importance of knowledge, one aim of this work is to investigate

new techniques for its abstraction, to thereby revise state-of-the-art software development.

However, probably not all traditional concepts will be thrown away. Basic things like control

structures (looping, branching etc.) abstracting logic knowledge in form of algorithms are

still of importance but appear in a different form (as will be shown in chapter 9). It therefore

seems to be more suitable to say that the new concepts will complement (and not revise

completely) existing development techniques, as was planned at the beginning of this work

(figure 1.3).

5.3 Approach

The Software Gurus like Gamma, Buschmann, Fowler et al. found their patterns by observ-

ing daily software development, architectures, projects and their standard solutions. This

work observes other disciplines of science, phenomenons of nature, and tries to find parallels

to software engineering. It thus not just wants to provide solutions using state-of-the-art

techniques but rather question existing techniques and try to find alternative concepts. Be-

cause of the steady comparison to principles of nature and other sciences, this approach is

called cybernetics-oriented, as explained in section 1.4.

Although many of the ideas and solutions of this work, in a bottom-up manner, stem from

writing source code in practice (following the Constructive Development method of research

as announced in section 1.5), the overall approach and explanation of results follow a top-

down path. High-level concepts are considered first, before moving on to an implementation

and proof in practice.

166 5 Extended Motivation

Mind and Brain A first observation, when looking at human beings from a philosophical

perspective, is the separation of Mind and Brain (Body) (figure 5.2). Accordingly, CYBOP

treats computers as Systems owning and processing Knowledge. This is not unlike the idea

of Agent systems owning a Knowledge Base (section 4.3.7). All abstract knowledge that

humans make up belongs to their mind. The brain is merely a physical carrier of knowledge.

research 1

mind &

brain

system control knowledge

Figure 5.2: Separation of Mind/ Brain Leading to Knowledge/ System Control

Another conclusion resulting from this first observation is that there should actually be two

kinds of software: one representing passive knowledge and the other actively controlling a

system, close to hardware.

Chapter 6 deals with this topic.

Human Thinking Secondly, attention is payed to the concepts of Human Thinking, as

investigated by psychology. Many of them are already considered in current programming

languages, for example Discrimination and Categorisation. However, an essential one that

has not been implemented yet is Composition. Its application would make every abstract

model a Hierarchy by default.

Hierarchies are not new, they are present in many ways in today’s programming. There

are object hierarchies, process hierarchies, design patterns modelling a hierarchy and more.

But: the hierarchy as concept is not inherent in the type system of current programming

5.3 Approach 167

languages. If it were, then every type would be a Container by default.

system control knowledge

research 1

mind &

brain

research 2

human

thinking

hierarchical knowledge

Figure 5.3: Concepts of Human Thinking Leading to Hierarchical Knowledge

Through the application of these thoughts, the knowledge becomes Hierarchical Knowledge

(figure 5.3). Additionally, this work tries to embed knowledge models in an environment of

Dimensions, as known from physics, and further properties. Every model keeps a number

of Meta Information about its parts. Positions in space or time are one such example.

Chapter 7 further elaborates on these issues.

Data and Rules Thirdly, State- and Logic knowledge get distinguished (figure 5.4). It is

known from neurological research that the human brain has special communication regions

(optical, acoustical, motoric) responsible for information input and output. Simply spoken,

these regions do nothing else than translating data, that is an input State into an output

State, according to special rules which can be summarised by the term Logic.

This is where systems theory, that uses similar abstractions, comes in. Every system can be

seen as Black Box with input/ output (i/o) states and a translation logic.

When talking about states, this work does not mean classical State Models which are often

modelled by a State Chart Diagram. A CYBOP state model rather is a composed Set of

states.

168 5 Extended Motivation

research 1

mind &

brain

research 2

human

thinking

research 3

data

& rules

system control knowledgehierarchical knowledge
state logic

hierarchical knowledge

Figure 5.4: Translation of Data by Rules Leading to State-/ Logic Knowledge

Chapter 8 describes more details.

CYBOP In CYBOP, all knowledge, that is states as well as logic, belongs to the Statics

of a system. It is described by fixed structures. The processing of knowledge at runtime, in

order to control a system, is called Dynamics.

The complete modelling and storage of static knowledge requires a formal language, which

gets introduced as Cybernetics Oriented Language (CYBOL) in this work. Its dynamic pro-

cessing, close to hardware, is guaranteed by the Cybernetics Oriented Interpreter (CYBOI)

which is needed to run systems defined in CYBOL (figure 5.5).

Chapters 9 and 10 explain CYBOL and CYBOI, respectively. Both are used in the Res

Medicinae prototype application which gets introduced in chapter 11. Altogether, CYBOL,

CYBOI and the theoretical concepts behind are called Cybernetics Oriented Programming

(CYBOP).

cybop

research 1

mind &

brain

research 2

human

thinking

research 3

data

& rules

cyboi cybol

system control knowledgehierarchical knowledge
state logic

hierarchical knowledge

staticsdynamics

Figure 5.5: Overall CYBOP Approach Based on Statics and Dynamics

Part II

Contribution

6 Statics and Dynamics

I think therefore I am.

Rene Descartes

statics &

dynamics

As first of the three main topics of part II of this work, this

chapter investigates how a separation of Static Knowledge

from its Dynamic Processing in a system can be justified.

The later chapters 7 and 8 will deal with the structuring

of knowledge.

6.1 Virtual- and Real World

A separate treatment of knowledge and system functionality can be observed in many fields

of science. Some examples are given following.

6.1.1 Mind and Body

In Philosophy, it is common to distinguish between two traditions: Euro-American Western

Philosophy and Asian Eastern Philosophy [60]. The former, also called Western Academic

Philosophy, is often divided into: Analytic- and Continental Philosophy. While continental

philosophy is predominant in continental Europe, analytic philosophy dominates Anglo-

American philosophy. Western philosophy has its roots in ancient Greek Philosophy, which,

among others, dealt with five broad types of analytical questions [60]:

174 6 Statics and Dynamics

- metaphysical: study of any of the most fundamental concepts and beliefs about the

basic nature of Reality, such as Ontology as the science of Being

- epistemological: study of the nature, origin and scope of Knowledge

- logical: study of Inference, that is Reasoning used to reach a conclusion from a set of

assumptions

- ethical: study of Morality, that is behaviour which is good

- aesthetic: study of the nature of Beauty

To the metaphysical questions belong:

- What is reality, and what things can be described as real?

- What is the nature of those things?

- Do some things exist independently of our perception?

- What is the nature of space and time?

- What is the nature of thought and thinking?

- What is it to be a person?

As already mentioned in section 4.6.1, ontology and metaphysics are closely related. The

Skeptic’s Dictionary [47] writes:

Ontology is a branch of Metaphysics which is concerned with being, including

theories of the nature and kinds of being. Monistic ontologies hold that there

is only one being, such as Spinoza’s theory that God or Nature is the only

substance. Pluralistic ontologies hold that there is no unity to being and that

there are numerous kinds of being. Dualism is a kind of pluralistic ontology,

maintaining that there are two fundamental kinds of being: Mind and Body.

The question how both are related is known as Mind-Body-Problem, and besides the above-

mentioned pluralistic Dualism, there are two monistic views to it [60]:

- Materialism (Physicalism) is the view that mental events are nothing more than a

special kind of physical event

- Phenomenalism (Subjective Idealism) is the view that physical events are nothing

more than a special kind of mental event

6.1 Virtual- and Real World 175

The Wikipedia encyclopedia [60] writes:

Most neuroscientists believe in the identity of mind and brain, a position that

may be considered related to materialism and physicalism, though there is a

subtle difference; namely, that postulating an identity between mind and brain

(or more specifically, particular types of neuronal interactions) does not nec-

essarily imply that mental events are nothing more than physical events, but

rather is more akin to saying that physical events and mental events are dif-

ferent aspects of a more fundamental mental-physical substratum which can be

perceived as both mental and physical, depending on perspective.

The idea described hereafter follows this interpretation of materialism. Applied to human

existence, this philosophical perspective means that the mind of human systems carries a

Virtual World that is supposed to be formed by the activity of an underlying physical brain,

which serves as representation within the Real World. Other questions like whether human

systems also host something like a Soul, or if the mind actually is what makes up the soul

are a topic of Religion and not further discussed here.

Transferring this philosophical view to information engineering, one might at first think

that Hardware is what represents the body- and Software what represents the mind of a

computer system. This is true in the first instance, but not thought through to the end.

There are many kinds of software. Operating Systems (OS) with their Device Drivers,

Embedded Systems, Real Time Systems or Firmware operate close to hardware. Standard-

and Business Applications, on the other hand, contain a lot of logic and domain knowledge

which is independent from the underlying hardware.

As result, one might as well treat hardware together with hardware-dependent system control

software as the body-, and pure application knowledge as mind of a computer system. While

system control requires some active software running a process (section 3.1) or threads and

controlling devices, application knowledge may absolutely be passive.

One argument in favour of summarising hardware and system control software was mentioned

in section 4.1 which cited Tanenbaum [305] who considers hardware and software to be

logically equivalent because one could replace the other.

176 6 Statics and Dynamics

6.1.2 Brain Regions

Neurology as branch of Medicine deals with the Central Nervous System (CNS) and Pe-

ripheral Nervous System (PNS) of human beings. These can be further divided as shown

in figure 6.1.

nervous system

peripheral central

autonomic somatic brain spinal cord

sympathetic parasympathetic forebrain midbrain hindbrain

telencephalon diencephalon mesencephalon metencephalon myelencephalon

cerebral cortex

basal ganglia

hippocampus

amygdala

thalamus

hypothalamus

tectum

tegmentum

pons

cerebellum

medulla

Figure 6.1: Divisions of the Nervous System [52]

Not all parts of this systematics shall be explained here; more details can be found at

[270]. Chapter 8 will make some remarks on the PNS, whose Neurons (nerve cells) can be

functionally divided into sensory (afferent) and motor (efferent) ones. The functions of

some brain structures, as part of the CNS, are described in table 6.1. At the same time,

this table (where n/a means not applicable) tries to give possible analogies to a standard

computer system, whereby hardware as well as software are considered.

Of course, the analogies do not match exactly. Also, there are many functions – like Thought

or Emotions – that a computer cannot perform. The important thing to notice, however, is

that there are brain regions mainly storing (Hippocampus) and applying knowledge (Cere-

bral Cortex) and others coordinating the input/ output (i/o) of that knowledge (Midbrain,

Basal Ganglia) in form of simplified information, through sensoric/ motoric organs of the

human body.

That is, what philosophy calls Mind (section 6.1.1) is the Knowledge that is anatomically-

physically mainly situated in the Hippocampus and Cerebral Cortex. And again, i/o control

6.1 Virtual- and Real World 177

Brain Structure Function Computer Analogon

Cerebral Cortex Thought, Voluntary Movement, Lan-

guage, Reasoning, Perception

Application/ Domain

Knowledge

Cerebellum Movement, Balance, Posture n/a (only in Robots)

Brain Stem Breathing, Heart Rate, Blood Pressure Timer, Power Supply

Hypothalamus Body Temperature, Hunger, Thirst,

Emotions, Circadian Rhythms

Self-observing Sensors

(Battery-/ CPU Status)

Thalamus Sensory Processing, Information For-

warding, Movement

Event Mechanism, Sig-

nal Loop, IRQ Handler

Limbic System Emotions Signal Priorities

Hippocampus Learning, Memory Knowledge Storage,

RAM

Basal Ganglia Movement n/a (only in Robots)

Midbrain Vision, Audition, Eye- and Body Move-

ment

I/O Device Drivers,

Translation

Table 6.1: Brain Structures in Analogy to a Computer [52]

does not only rely on hardware devices but also on the corresponding driver software and

signalling mechanism. To say it differently: The software that contains application/ domain

knowledge is to be treated separately from system control software.

6.1.3 Cell Division

Among other topics, Biology – as the science of life – deals with the Biological Cell, as

smallest structural and functional unit of all living organisms. All types of cells have a

Membrane, which envelopes a substance called Cytoplasm, and Desoxy Ribo Nucleic Acid-

(DNA) as well as Ribo Nucleic Acid (RNA) molecules. A DNA molecule is, roughly said, a

chain of Chemical Bases. The Order in which bases are placed determines the properties of

(Proteins of) a biological creature. To the Organelles contained in cytoplasm belong [60]:

- Cell Nucleus: housing the genetic information

- Ribosomes: producing proteins

- Mitochondria and Chloroplasts: generating energy

- Endoplasmic Reticulum (ER) and Golgi Apparatus: transporting macromolecules

- Lysosomes and Peroxisomes: digesting

178 6 Statics and Dynamics

Multicellular organisms grow by a process called Cell Division, in which a Mother Cell

divides into two Daughter Cells. The process differs slightly between cell types, but mostly,

the genetic information (DNA) is replicated first, before the cell nucleus- and finally the

whole cell divides, whereby the genetic information is distributed equally to both new-born

cells. The new cells use the genetic information encoded in the DNA, to create new organelles

and to function correctly.

In a comparative consideration, the cell corpus may be equated with a computer system,

and the genetic information with the software which runs that system. Each cell represents

a system with different hardware but all cells (in one-and-the-same biological creature) use

the same configuration information. In other words, the configuration information can be

forwarded and used in different hardware.

But, again, there is one thing to keep in mind: System control software is not equal to

application software. The configuration information contained in a DNA may well represent

the building plan for all kinds of cells in a biological organism – but it is not controlling

those cells. Genetic information in a DNA is passive; in order to make use of it, some active

mechanism must be employed. In a biological cell, it is the RNA molecules which transmit

the genetic information from the DNA (via transcription) into proteins (by translation).

In a simplified view, one might say: The cell is built according to the instructions read from

the DNA. The genetic information of the DNA may be compared to the domain knowledge of

a software application, or generally to configuration information – also that of an Operating

System (OS). The RNA activity and other cell control mechanisms, on the other hand, are

comparable to signalling, control loops, or the device drivers of an OS.

6.1.4 Short- and Long-Term Memory

It was previously worked out that there are brain regions mainly storing and applying knowl-

edge and others controlling the input/ output (i/o) and manipulation of that knowledge.

Learning, Storage and Recall of knowledge are main tasks of the human brain, which are

studied by the science of Psychology.

Besides the persistent storage in Long Term Memory (LTM), the brain is capable of storing

transient information in Short Term Memory (STM), the latter also being called primary

or active memory [60]. An additional Sensory Memory stores information arriving directly

from the corresponding organs. Figure 6.2 tries to classify some types of memory, as de-

6.1 Virtual- and Real World 179

scribed by psychology. It is not more than a trial because psychology itself is not sure about

memory classification and several theories exist.

memory

procedural declarative

episodic semantic

acousticiconic working

short-term long-termsensory

Figure 6.2: Types of Memory [187, 137]

The Encyclopedia of Educational Technology (EET) [137] writes:

The sensory information store has unlimited capacity, and reacts to both visual

and auditory information. However, the duration of information in sensory

memory is extremely brief, perhaps only 300 miliseconds, and is subject to

rapid decay.

STM, in general, is characterized by a limited capacity of up to seven pieces

of independent information, and in the brief duration of these items in STM,

usually anywhere from three to 20 seconds. Additionally, decay appears to be

the primary mechanism of memory loss in STM.

LTM efficiently stores our knowledge about the world. It is important to con-

trast LTM with other types of memory and understand how it is structured.

The knowledge we store in LTM affects our perceptions of the world, and in-

fluences what information in the environment we attend to. LTM provides the

framework to which we attach new knowledge, and its properties have important

implications for instructional design.

In the words of the Free Wikipedia Encyclopedia [60], Information held in STM may be:

180 6 Statics and Dynamics

recently processed sensory input; items recently retrieved from LTM; or the result of recent

mental processing. When doing mathematical calculations, for example, intermediary results

stored in STM are available for only a short time and forgotten soon after.

The declarative LTM is conscious memory, a film of past contents [86]. The procedural – or

non-declarative – LTM is unconscious memory which enables humans to carry out a task

(like riding a bicycle), without having to consciously control it. In other words, procedures

stored in non-declarative LTM are available- and may run as background program.

What effects do these reflections have on the design of software systems? The storage and

dynamic processing of static knowledge may firstly rely on at least two different kinds of

memory, one for persistent- and another one for transient storage of knowledge; secondly,

they may rely not only on one main process controlling the system, but (as equivalent to

procedural LTM) employ a number of background processes solving special tasks.

6.1.5 Information Processing Model

Information processing, from the view of Cognitive Psychology, follows the model shown

in figure 6.3. General information has to pass several stages before it becomes meaningful

knowledge. The results of processing stages are stored in different memories.

sense

information

from

environment short term

memory

long term

memory

sensory

memory

transfer transfer

retrieve

rehearse

forget forget

Figure 6.3: Information Processing Model [137]

6.1 Virtual- and Real World 181

The Encyclopedia of Educational Technology (EET) [137] writes on this:

After entering sensory memory, a limited amount of information is transferred

into short-term memory. . . . The process of transferring information from STM

into LTM involves the Encoding or Consolidation of information. . . . Recent

research (focuses) on the necessity of the brain to organise complex information

in STM before it can be encoded into LTM.

In this process of organization, the Meaningfulness or Emotional Content of an

item may play a greater role in its retention into LTM. Also, on a more concrete

level, the use of Chunking has been proven to be a significant aid to STM

transfer to LTM. Because STM’s capacity is limited to seven items, regardless

of the complexity of those items, chunking allows the brain to automatically

group certain items together.

Certainly, the emotional content of an item can be neglected for computer systems as of

today. But chunking as a technique to divide information into discrete items is of great

importance in human thinking, which gets investigated closer in chapter 7.

6.1.6 Persistent and Transient

In the science of Informatics, there are a few Integrated Circuits (IC) – so-called Read

Only Memories (ROM) – containing unchangeable programs. The Basic Input/ Output

System (BIOS) of a computer is one example for such programs, software of Personal Digital

Assistants (PDA) or Mobile Phones are others. Often, the BIOS is stored in Electrically

Erasable Programmable ROM (EEPROM) or its later form called Flash ROM. It thereby

gets writable. When writing it, the complete old BIOS gets overwritten. Most software

programs, however, reside on a Hard Disk Drive (HDD) as permanent storage medium.

In order to use them, such persistent programs often need to be loaded into an IC called

Random Access Memory (RAM) which, other than a ROM, can be both read from and

written to. Most RAMs are volatile which means that the data they store – to which also

belong programs – are transient, that is get lost in case the computer is powered down. The

ability to manipulate data in memory is a pre-requisite to usefully work with a computer.

One surely could, with some effort, rearchitect computers so to let the Central Processing

Unit (CPU) communicate directly with persistent memory (like a HDD), instead of RAM.

One reason for not doing this is the Performance of computer systems – RAM can be

182 6 Statics and Dynamics

accessed much faster than a HDD. Another reason is the independence from differing HDD

designs.

What this section by its remarks tries to show is that static software becomes dynamic,

that is changeable over time, when being loaded into a RAM whose data (represented by

its state) can be processed (manipulated) through a CPU. Although not being so new, this

statement has importance for some considerations later in this chapter.

While some kinds of software (like standard- or business applications) mainly contain static

knowledge of a special domain, other kinds do mainly use that knowledge to dynamically

control hardware. The point is that traditionally, both kinds of software are mixed up.

A business application has to care about memory allocation, graphical input and output

(even when using a framework for that), communication mechanisms and more, although

these are not in its original interest. On the other hand, an operating system often contains

configuration knowledge about its structure or available devices that does not actually belong

into it. In order to achieve a clearer structure with less dependencies and more flexibility, it

is necessary to treat both kinds of software differently.

6.2 System and Knowledge

Having explained why a strict separation of application knowledge and system control soft-

ware is desirable, several state-of-the-art techniques can now be considered once again, in

order to find out about possible new effects to software design or source code.

6.2.1 Configurable or Programmable

Knowledge (first defined in section 4.5 of this work) is present in all kinds of software

systems. It is what characterises a system, because: it defines possible states and logic, their

structure and relations, and thereby a complete application; it such determines the way a

system process controls the computer hardware it runs on; it thereby has the capability to

change the properties and behaviour of a whole computer system. One can therefore say

that knowledge encoded in software represents the Configuration information necessary to

run a computer system in the desired way.

In addition to the configuration information hard-coded in the program, most applications

offer to alter special settings such as paths, language choice and spelling, editor and saving

6.2 System and Knowledge 183

options, colours, fonts and further properties. Usually, these are made persistent using

some kind of external storage like a flat file or a database. One popular format for storing

simple properties are so-called Key-Value-Pairs. Modern applications do also make use of

hierarchical storage for more complex settings.

Yet if a software program already represents all knowledge needed to run an application on

a computer, why storing extra settings externally? Obviously, a standard program is not

flexible enough; it cannot be changed anymore after compilation. But program changes at

runtime are often highly desirable.

So, if external storage of properties does make sense, why not storing everything outside

the actual program? This seems to be a crazy but very useful idea, as it would result in

absolutely flexible application systems. But it has limits. There must be some core program

(Kernel) able to read and write (interpret), and to process (handle) external properties

(Signals). The more complex, structured and inter-related these properties are, the more

suitable it is to call them Knowledge.

A technical system may be able to understand external knowledge, just like human beings

have the cognitive abilities to understand their environment by building a Virtual World

of it. Yet is this not enough. Knowledge about the Real World environment is one thing;

interacting with it another. A computer has hardware devices for interacting with the real

world. The devices need to be operated correctly so that knowledge can be exchanged

through them. This hardware driving functionality is normally provided by an Operating

System (OS). But current OS have the deficiency of not being able to handle knowledge.

What is needed, finally, is a system with low-level hardware control abilities like an operating

system plus additional high-level knowledge handling abilities [125].

Other people reflected on this and have come to a similar conclusion. Thomas Beale writes

in [168]:

The history of IT . . . has taught us that the only kind of useful system that

can be delivered to domain users . . . is one which is not just configurable, but

programmable – not by statements of source code, but by high-level domain-

user-oriented tools.

Well, the user-oriented, domain-knowledge handling tools are desirable, but only in the

second place. The important part of this statement is the realisation that systems need

to become programmable, and this by External Knowledge. Whether this knowledge gets

184 6 Statics and Dynamics

created and maintained manually or by using graphical tools, is of minor importance. What

is needed in any case is a formal knowledge specification language serving as basis for the

people or tools to work on. Chapter 9 will introduce such a language.

6.2.2 Code Reduction

In his book Programming Pearls [26, page 128], Jon Bentley demonstrates Code Reduction

on the following graphics program example:

for i = [17, 43] set(i, 68)

for i = [18, 42] set(i, 69)

for j = [81, 91] set(30, j)

for j = [82, 92] set(31, j)

He suggests to replace the set procedures that switch a Picture Element (Pixel) with suitable

functions for drawing horizontal and vertical lines:

hor(17, 43, 68)

hor(18, 42, 69)

vert(81, 91, 30)

vert(82, 92, 31)

This code, finally, gets reduced to pure data stored in an array:

h 17 43 68

h 18 42 69

v 81 91 30

v 82 92 31

The data can be read by an interpreter program which knows about their meaning.

Bentley’s example shows in a nice way how knowledge can be extracted from program

source code. The graphic application’s actual data are represented by the values in the

array above. All other functionality accessing and manipulating Pixels directly does belong

to system control and remains in the interpreter program. Chapter 10 will introduce an

interpreter that is able to read and handle general knowledge, only on a much larger scale.

6.2 System and Knowledge 185

6.2.3 Base- and Meta Level

Reflective techniques as described in section 4.2.1 make use of one so-called Base Level and

one or more Meta Levels. The reason for splitting a system’s architecture in this way is the

hope to be able to move rather general System Functionality into a meta level, while leaving

domain-specific Application Functionality in the base level. (Well, in his book Analysis

Patterns – Reusable Object Models [97], Fowler used meta levels to model general classes

containing not exclusively system- but also domain-specific functionality.) The conflicts a

design decision of that kind can bring with were described in section 4.2.1, which – above

all – criticised the bidirectional dependencies.

However, what the proposition of reflective software patterns shows, is the existence of a

wish among software developers, to separate general system- from more specific application

functionality. And, as was shown in section 6.1, nature does exactly that. Yet while reflective

mechanisms use the same implementation techniques for system- as well as for application-

specific functionality, nature always treats passive knowledge strictly separate from active

system control (section 6.1). Bidirectional dependencies do not exist between the both.

6.2.4 Reference- and Archetype Model

The Archetype concept as introduced in section 4.6.8 does provide an independent implemen-

tation technique (language) for the definition of application-specific domain knowledge: the

Archetype Definition Language (ADL). The documents written in it, altogether, are referred

to as Archetype Model (AM). They get parsed and instantiated at runtime. These instances

are then used to constrain instances of a Reference Model (RM). Because of the existence

of two models implemented with two independent techniques, this method of programming

is called Dual Model Approach (section 4.6.9).

It wants to solve the dilemma of lacking domain semantics in classical information mod-

els. Archetypes are the corresponding knowledge documents carrying semantic information.

They provide the structures and rules after which instances of an RM can be combined

meaningfully. Despite its drawbacks mentioned in section 4.6.9, the dual model approach

animated this work to pay attention to two things:

1. the usage of different implementation technologies for domain knowledge (AM) and

underlying system-level functionality (RM)

2. the need to provide constraint information with knowledge models

186 6 Statics and Dynamics

The distinction between domain knowledge and system-level functionality is realised by pro-

viding a knowledge modelling language (chapter 9) and a corresponding interpreter (chapter

10). The language is capable of expressing structural- as well as meta information, to which

also belong constraints.

6.2.5 Common- and Crosscutting Concerns

Section 4.3.6 argumented that, after [254], Aspect Oriented Programming (AOP) were nec-

essary because some concerns were not easily turned into Classes – the natural unit of

modularity for Object Oriented Programming (OOP) – because they’d cut across classes.

Much like OOP were a way of modularising Common Concerns, AOP were a way of modu-

larising Crosscutting Concerns. Figure 6.4 is a trial to classify both kinds. (The distinction

into Development- and Production Concerns is of minor importance here.)

concern

common crosscutting

production development

� domain knowledge

� statics

� system control

� dynamics

� change monitoring

� context passing

� providing consistent

behaviour

� tracing, profiling, logging

� pre- / post conditions

� contract enforcement

� configuration management

Figure 6.4: Classification of Concerns

Looking closer at these, it becomes obvious that crosscutting concerns represent general

System Control functionality, while common concerns stand for properties specific to an

Application. Comparing with nature (section 6.1), the separation of both kinds of concerns

seems absolutely correct. It arises the question, however, if AOP with all its additional

concepts is really the most suitable way for treating crosscutting concerns? This work

6.2 System and Knowledge 187

means no and suggests to simply put all general control functionality into a basic knowledge-

interpreter system underlying all applications (chapter 10).

6.2.6 Application and Domain

Over the years, it has turned out to be helpful in software design, to separate Domain

Knowledge from Application Functionality. In one-or-another form, the architectural pat-

terns (section 4.2.1) Layers, Domain Model and Model View Controller (MVC) all suggest

to apply this principle. Figure 4.1 showed a typical example of a system with logical layers,

among them a domain layer containing business logic.

The Tools & Materials approach of section 4.4.1 talks of active applications (tools) working

on passive domain data (material). And also System Family Engineering, as mentioned at

the beginning of section 4.4, is based on a separate treatment of domain and application, in

form of Domain Engineering (DE) and Application Engineering (AE).

An often neglected fact of these approaches is that not only the domain, but also the appli-

cation contains important business knowledge. Figure 6.5 tries to demonstrate this by or-

ganising typical software patterns (section 4.2) and system functionality into two orthogonal

pairs of layers. The User Interface (UI), for example, is mostly assigned to the application

layer, yet since it is clearly tailored for a specific business domain, it be better assigned to

a knowledge layer, together with the corresponding domain models. And the logic behind

a UI, if not contained in the UI itself, is often put in a Controller which belongs to the

application-, not the domain layer. But because a controller’s task is the management of

general functionality like the processing of signals (events) and communication, which are

not application-specific, it be better sorted into a low-level system layer. It is true that

controllers often contain some application logic; but that in turn belongs to the high-level

knowledge layer above it.

Similarly, the domain often contains functionality which actually does belong into the ap-

plication process: Database (DB) access is handled by help of patterns like the Data Map-

per (section 4.2.1), in which the mapper objects contain Structured Query Language (SQL)

code to connect to a Database Management System (DBMS); Enterprise Java Beans (EJB),

which should better be pure domain objects, imitate a Middleware providing persistence-

or other communication mechanisms, which originally have nothing to do with the business

knowledge they contain.

188 6 Statics and Dynamics

Figure 6.5: Domain-Application- versus System-Knowledge Separation

It is precisely this Mixup of responsibilities between an application system and its domain

knowledge, that leads to multiple inter-dependencies and hence unflexibility within a system.

Instead, a separation should be made between active System Control and passive Knowledge.

A UI’s appearance would then be treated as domain knowledge, just as the logic of the

functions called through it. A data mapper would be transformed into a simple Translator

– similar to a Data Transfer Object (DTO) (section 4.2.1) – that knows how to convert

data from one domain model into another; its DBMS access functionality, however, would

be extracted and put into the system layer. More on that in chapter 8. Monstrosities like

EJBs would likewise be opened up and parted into their actual domain knowledge, and all

the other mechanisms around – the latter being moved into the low-level system layer.

To sum up this thought: The essential realisation here is that hardware-close mechanisms

like the ones necessary for data input/ output (i/o), enabling inter-system communication,

should be handled in an active system layer which was started as process on a computer, and

not be merged with pure, passive domain knowledge. Application logic which is traditionally

held in controller objects of the application layer, and other business data models should

rather belong to a high-level knowledge layer.

In chapter 10, this work introduces an interpreter providing low-level functionality. High-

level knowledge, on the other hand, may be modelled in the language defined in chapter

9.

6.2 System and Knowledge 189

6.2.7 Platform Specific and -Independent

The Model Driven Architecture (MDA) discussed in section 4.4.6 took a first step into the

right direction, by distinguishing Platform Independent Models (PIM), that is domain- and

application logic, and Platform Specific Models (PSM), that is implementation technology.

It encourages the use of automated tools for defining and transforming these models.

While the definition, organisation and management of architectures (PIM) mostly happen

in the analysis- and design phase of a Software Engineering Process (SEP), the generation

of source code (PSM) can be assigned to the implementation phase. The approach still has

weaknesses, and tools which can truly generate running systems are rare or not existent,

at least to what concerns more complex software systems – not to talk of the so-called

Roundtrip Engineering (section 4.4.7), which is managed by even less tools (experience of

the author while developing on the Object Technology Workbench (OTW) UML tool [152]

and working in several projects).

Nevertheless, the trend clearly goes towards more model-centric approaches, as section 4.4.7

pointed out. The aim of this work is to supply domain experts and application developers

with a Model Only technology (in relation to figure 4.45), allowing to create application

systems that do not have to be transformed into classical implementation code any longer,

whereby the SEP abstraction gap number 2 (figure 2.6) could be closed conclusively. The

knowledge schema introduced in chapter 7 is a necessary prerequisite therefor.

6.2.8 Agent with Mental State

One design paradigm that early recognised the advantages of splitting software into low-level

system control and high-level knowledge, is Agent Oriented Programming (AGOP) (section

4.3.7). Agents, as active software components (which in this work means: running in an

own process), have a Mental State representing their knowledge, which they are able to

interpret and manipulate. This approach was copied in CYBOP.

Of the three elements Formal Knowledge Representation Language, Agent Programming

Language and Conversion Method, which an AGOP system, after section 4.3.7, needs in

order to be complete, this work provides the first two in form of the Cybernetics Oriented

Language (CYBOL) and the Cybernetics Oriented Interpreter (CYBOI), described in sec-

tions 9 and 10, respectively. Thereby, CYBOI itself is not a language, but represents a

ready system, written in the C programming language. A method for converting traditional

190 6 Statics and Dynamics

applications into agents is not provided, since methodologies are clearly not a topic of this

work.

Of course, there are differences distinguishing Cybernetics Oriented Programming (CY-

BOP) from traditional AGOP systems. CYBOP needs an own interpreter, because of its

new knowledge representation philosophy and -language, which are the topic of chapters 7

and 9. One reason for the difficult handling and intransparency of many traditional knowl-

edge representation languages is that they mix two kinds of knowledge: State- and Logic

descriptions. More on how this is avoided in CYBOP in chapter 8.

One may wonder why such a supposedly advantageous architecture is not used by all of

today’s systems? One reason may be that AGOP is still a rather young technology lacking

the necessary popularity. Another reason may be the bad reputation of AGOP systems

(and just about everything that has to do with knowledge representation) among average

developers – partly because of their immaturity, but mostly because of their complicated

knowledge models and -handling. Looking at the often quite cryptic appearance of the

corresponding languages, one tends to understand the developers’ dislike.

6.2.9 Data Garden

Now, if a separation of high-level knowledge from low-level system control software is con-

sidered to be useful, the next question must be: How, that is in which form, best to store

knowledge in a system?

One possible structure called Data Garden [139] was proposed by Wau Holland, founder

member and formerly chairman by seniority of the Chaos Computer Club (CCC) [48] –

Europe’s largest hacker group. (Note to the reader: A Hacker is just a computer freak; a

Cracker is a criminal.) Although being a non-academic organisation, his ideas on knowledge

modelling are very interesting to this work. He dreamt of whole Forests, Parks or – as the

name says – Gardens of Knowledge Trees and Data Bushes (figure 6.6).

Many knowledge engineers share a similar view and consider knowledge to be a network of

inter-related concepts. Philippe Ameline writes in [19]:

All hierarchical trees are inter-connected, and one does better replace (purely)

Hierarchical Traits with Named Traits . . .

A Hierarchical Tree is a set of traits between nodes. These traits are not labelled

since they all mean son of. A Semantic Network is a set of labelled traits, with

6.2 System and Knowledge 191

Figure 6.6: Data Garden

labels of the kind is a, is part of.

Thus, building a hierarchy and building a semantic network is the same kind of

job, but the hierarchy demands two (huge) constraints: there is a Single Root

Node, and nodes have a Single Kind of Label. These constraints usually can’t

be satisfied, so a migration from genuine hierarchy to semantic network usually

occurs.

The system architecture proposed in this chapter will have one single root node, for all

knowledge. Furthermore, chapter 7 will work out a hierarchical knowledge schema in which

all parts of a whole have a unique Name.

As an aside: Holland’s main interest was the question how information would best be rep-

resented visually. Knowledge having the form of plants could be recognised by their Shape

or Colour which would ease orientation within a data garden. Old data models that lost in

importance could visually loose their colour or move into the background, becoming smaller

in perspective.

Visualisation techniques described in Lombardoni [201] and Barberena [16] are Perspective

Walls, the Benediktine Approach, Fractal Rooms, Cone Trees and Hyperbolic Trees. In

his work, Lombardoni mapped object-oriented models to three-dimensional graphics. The

techniques are not elaborated further here since they belong to the visual side of knowl-

192 6 Statics and Dynamics

edge representation, whilst this work researches concepts for the structuring, storage and

management of knowledge in general. However, the results of this work might simplify

the visualisation of knowledge in future. Since CYBOP knowledge models are stored in

tree-form, it should be rather easy to represent them graphically.

6.3 Knowledge Management System

Section 6.1 justified a separation of knowledge from system control software. Section 6.2

considered the effects of that separation to traditional software design. What remains to be

investigated is how a system adhering to a separation of that kind would have to look like.

6.3.1 Hardware Connection

Knowledge is passive. What makes use of knowledge is the active parts of a system, in the

case of computers a process like the Operating System (OS) or applications using exter-

nal configuration settings. They are able to both, communicate with hardware and adopt

knowledge, for it to be memorised and processed.

Traditionally, OS make use of a number of helper processes (Daemons, section 3.6), for

services like printing or email delivery, which may also be used by applications. This work,

however, wants to unify services in just one low-level system control process. Another issue

are the varying communication paradigms a classical application has to consider. Persistence

mechanisms, user interfaces, remote communication – they all have their specific require-

ments, whether supported by a special framework (section 4.2.4) or not. This work wants

to simplify communication in a way that applications do not have to do more than issu-

ing a simple send or receive instruction, adding the desired language of communication. By

disburdening applications from low-level communication and signal (event) handling respon-

sibilities, they become purely passive knowledge (statics) which cannot act itself, but needs

to be read and interpreted by an active control process (dynamics).

Three main layers of information crystallise out: Knowledge, Control Software and Hard-

ware (figure 6.7). Tanenbaum [305] calls the latter two logically equivalent (section 4.1),

because one could replace the other. It is indeed up to the computer designer to decide how

much control software should get burned into hardware. Hence, the important separation is

between Knowledge on one side and Hardware together with Control Software on the other.

6.3 Knowledge Management System 193

 knowledge

 control software

 hardware

 cybol

 cyboi

 operating system

 computer

Figure 6.7: Knowledge – Hardware Connection

The previous sections 6.1.1, 6.1.2 and 6.1.3 tried to justify this separation by looking at

nature. Knowledge is the equivalent of: Mind (philosophically) and the virtual information

stored in a human brain’s Hippocampus and Cerebral Cortex, as well as of the informa-

tion encoded in a biological cell’s Desoxy Ribo Nucleic Acid (DNA). Hardware and control

software are the equivalent of: (philosophically) Body, (neurologically) parts of the human

brain (Midbrain, Basal Ganglia) which coordinate the input/ output (i/o) of knowledge

and (biologically) Ribo Nucleic Acid (RNA) molecules transmitting the genetic information

from the DNA into proteins.

Chapters 9 and 10 will describe the Cybernetics Oriented Language (CYBOL) as knowledge

specification format and the Cybernetics Oriented Interpreter (CYBOI) as system being able

to handle such knowledge, as well as to serve as hardware interface. All hardware-controlling

functionality needs to be present within either CYBOI or the underlying Operating System

(OS) closely coupled with it. Together, they are the active entity allowing virtual and real

world (knowledge and hardware) to communicate.

The remaining sections of this chapter describe important elements belonging to a control

software’s architecture. More detailed descriptions of the architecture and functionality will

be given in chapter 10 devoted to CYBOI only.

194 6 Statics and Dynamics

6.3.2 Memory

The application/ domain knowledge a control software processes resides in a Memory. Two

different kinds known from Informatics are the persistent and transient (volatile) memory

(section 6.1.6). For the system architecture investigated in this section, the term Memory

does not refer to hardware, but to a special data structure for knowledge storage.

Section 6.1.4 introduced the Sensory Memory, Long Term Memory (LTM) and Short Term

Memory (STM), so labelled by the science of psychology. Sensory memory stores data

arriving from input organs; LTM stores past contents; STM holds temporary information

to be processed within the system. A knowledge-processing system with human archetype

– such as the one proposed in this work – needs to have equivalents for all three of them.

Figure 6.8 illustrates a system based on four kinds of memory:

- Knowledge Memory (equivalent of LTM)

- Signal Memory (equivalent of STM)

- Internal Memory (program-internal data)

- Input/ Output Memories (sensory data)

The Knowledge Memory is represented by one single root node that is able to keep knowledge

hierarchies of arbitrary size. The Signal Memory is much the same as the Event Queue in

classical systems. Internal Memory and Input/ Output Memories are helper memories for

storing system-internal parameters.

6.3.3 Processing

While knowledge as such is static at a given time instant, its Processing and manipulation

over time are dynamic. The processing is triggered by some Signal (also called Event),

which is a state change known to the system. Such signs with defined meaning, as the Duden

Encyclopedia [71] calls them, can be most different in their appearance and communication

channel used.

Signals are commonly stored in a Signal Memory (also called Event Queue), as mentioned

in the previous section. An endlessly running Signal Loop (also called Waiting Loop) as

illustrated in figure 6.8 is constantly checking the signal memory for new signals. Once a

signal is detected, it gets removed from the signal memory and handled by the system. The

6.3 Knowledge Management System 195

system

memory processing

startup

shutdown

running

main

knowledge

signals

internals

input output

signal

loop

unix socket

tcp socket

x windows

console tui

ms windows

win socket

Figure 6.8: System with Memory Structures, Processing Loops and Lifecycle

signal with highest Priority is processed first. The later chapter 10 will explain further

details and deliver a more functional illustration (figure 10.2).

Section 6.1.2 mentioned the Hypothalamus and Limbic System as parts of the human brain

producing emotions. Section 6.1.5 wrote that the processing of a signal may be greatly

influenced by the meaningfulness or Emotional Content of an item. Well, software systems

do not work with emotions, but signals can be assigned a Priority, which is somewhat

comparable. Prioritising as technique stems from Operating System (OS) research and can

be well applied in the described knowledge-processing system: Signals can be filtered in a

way that unimportant signals get discarded; urgent signals get processed right away; less

important but meaningful signals get queued for later handling.

All intra-system and inter-system communication is based on the exchange of knowledge

via signals. A signal can transport simple or more complex Messages, mostly in encoded

form. The communication details, including encoding and decoding procedures for knowl-

edge model translation, and the logic after which an input state gets transferred into an

output state are the topic of chapter 8.

Besides the declarative Long Term Memory (LTM), section 6.1.4 mentioned the procedural

(non-declarative) LTM, enabling humans to carry out a Background Task, without having

to consciously control it. A similar principle is applied for input/ output (i/o) handling, in

196 6 Statics and Dynamics

the described knowledge processing system. Independent Threads running their own loops

control a special i/o mechanism (like UNIX socket etc.), each (figure 6.8).

6.3.4 Lifecycle

Before the memories and control loops described before can fulfill their tasks of storing and

processing knowledge, respectively, they have to be created and activated, which happens

at system Startup (figure 6.8). The startup needs to be initiated by some main entry

procedure. At system Shutdown, just the opposite needs to happen, that is control loops

and memories have to be deactivated and destroyed. In between startup and shutdown, the

system lives, it is running. The whole procedure of starting up, running and shutting down

a system is called System Lifecycle – not to be mixed up with the lifecycle of software, which

refers to its analysis, design, implementation and subsequent growing old. The term System

Lifecycle in this work is used in relation to the component lifecycle of Component Oriented

Programming (COP), described in section 4.3. It dictates the order in which creation and

destruction of system parts (in memory) need to happen.

Once the startup phase has reached the endless signal waiting loop, it relies on the presence

of an initial signal, to get some main application running, that is instantiate given knowledge

templates. The signal has to contain a corresponding (logic) knowledge model describing

an operation activity. It must be added to the signal memory during system startup. More

details are given in chapter 10.

The difference between Knowledge Templates and Knowledge Models – as used in this work

– is that templates contain static knowledge stored persistently in something like a file on a

Hard Disk Drive (HDD); models, on the other hand, represent instantiated, dynamic knowl-

edge that resides transiently in a computer’s Random Access Memory (RAM). The process

of Instantiating knowledge involves cloning a persistent template in order to receive a tran-

sient model, which can then be freely manipulated in RAM. Likewise, transient knowledge

models can be made persistent, if so desired, by Serialising and writing them onto some

persistent memory like a HDD.

Besides the knowledge that gets instantiated by the lifecycle at system startup, there has

to be a possibility to create and destroy knowledge instances at a later point in system

runtime. The decision whether to create a transient model at system startup or only later

as the need arises, can have great effect. An application with Graphical User Interface

(GUI), for example, may contain 100 dialogues. If there is enough RAM in the system,

6.3 Knowledge Management System 197

all dialogues could get created at startup, so that one would only have to switch them

visible or invisible, at runtime. In this case, high dialogue Performance (a non-functional

requirement) would be guaranteed.

Not all systems will have enough RAM; not all developers will want to allocate (and thereby

block) large parts of memory – especially not for those dialogues in the example, which are

rarely used. Knowledge models must therefore be creatable anytime after system startup,

using signals containing special logic. (More on that in chapter 8.) Creating a knowledge

model only when it is needed is less well-performing but saves a lot of memory. The decision

which instantiation paradigm to use finally falls to the developer. She or he has to consider

concrete application needs, runtime requirements and the environment.

Again, parallels to biology can be drawn but differences are obvious, too. Persistent knowl-

edge templates represent the Configuration after which a system gets created in form of

transient knowledge models in memory. This is similar to a Desoxy Ribo Nucleic Acid

(DNA) providing the building plan for a biological cell. Yet can one not simply create

knowledge instances in memory and leave them on their own. Contrary to biological cells

which develop and copy themselves, knowledge instances in a software system have to be

referenced. This is necessary in order to be able to work with them and later to properly

destroy them, since forgotten, unfreed memory areas are one main reason for system crashes.

Traditional systems lacking a central management of instances had to invent special mech-

anisms like Garbage Collectors (GC), to find and destroy forgotten instances which are not

referenced anymore. GCs are known from programming environments like Smalltalk [202] or

Java [112]. The knowledge processing system proposed in this work manages all knowledge

instances centrally, so that workarounds like GCs become superfluous.

The destruction of biological- and software systems differs, though. While biological sys-

tems molder in a diffuse manner over time, a knowledge instance tree representing a software

system can be properly folded in the opposite way it was unfolded at creation time. Since,

in the proposed system, all knowledge hangs on one single root node (section 6.3.2), for-

gotten instances can be easily identified and destroyed at system shutdown, to clean up the

memory.

7 Knowledge Schema

Wise Man’s Occupation is Organisation.

Thomas Aquinas

knowledge

schema

As first of the three main topics of part II of this work,

chapter 6 investigated why a separation of static knowledge

from its dynamic processing in a system is desirable. The

sections of this chapter deal with the Hierarchical Struc-

turing of knowledge, in order to find a general schema for

its modelling. After that, chapter 8 will elaborate on dif-

ferent kinds of knowledge.

7.1 Human Thinking

Knowledge as created by the human mind is learned by associating information, by embed-

ding it in a Context, as investigated by Pragmatics, a subfield of linguistics [60]. It is thus

built of structured, inter-related data (definitions given in section 4.5). The interesting ques-

tion explored in this section is what kind of structures and relations are used in knowledge

models as known from nature, that is Human Thinking?

7.1.1 Basic Behaviour

Starting from a neutral view to understanding the universe – and science in general – Stephen

Wolfram studied the abstract world of rules put into simple computer programs. He took

200 7 Knowledge Schema

the lessons from what kinds of things occur there and had them in mind when investigating

natural systems, as [60] writes. Wolfram’s book A new Kind of Science [344] argues that

the universe is made up of four basic types of behaviour (figure 7.1):

1. Repetition

2. Nesting

3. Randomness

4. Localised Structures

repetition nesting

localised structuresrandomness

Figure 7.1: Wolfram’s Four Basic Kinds of Behaviour [344]

These types of behaviour, after Wolfram, were present everywhere, in nature as in the whole

universe. Just everything in existence contained at least one of these structures and all

sciences were affected by them. Yet while Wolfram applies results of computing to the study

of nature, this work follows the exact opposite way in that it observes phenomenons of

nature and concepts used in other sciences, and tries to apply them to the design of software

systems. Without knowing a final answer – the unexpected surprise is that at least two of

Wolfram’s findings of basic behaviour match to abstractions as known from human thinking,

and have a pendant in this work:

7.1 Human Thinking 201

1. Repetition is the recurrence of equal structures. Yet before structures can be com-

pared, they have to be demarcated. This is what section 7.1.3 will call Discrimination

(later Itemisation), and also Categorisation.

2. Nesting creates the famous, beautiful Fractals. It is somewhat similar to Repetition,

only that the repeated structures are not equal in size and do not occur along some

chain. While the infinity of Repetition lies in its neverending Continuation along some

line(s) on the same level, it lies in the Diving into a deeper level for Nesting. Section

7.1.3 will call this Composition.

Wolfram defines a Principle of Universality which states that in fact all kinds of systems,

even very simple ones, are capable of showing complex behaviour in form of Localised Struc-

tures, once some threshold in the complexity of the underlying rules is passed. But where

is this threshold and who defines what complex behaviour actually is? Does a threshold

exist at all or are the four kinds of behaviour in fact not different? Indeed, one could argue

that neither Repetition, nor Nesting, nor Randomness are anything special and that it is

just the human mind interpreting them as something special, as assumed by this work. It

claims that the human mind gives structure and meaning to the surrounding real world by

building a virtual world. The principles of human thinking are therefore investigated in the

next sections.

Software abstracts human thought which, in order to understand and act in the surrounding

real world, needs to recognise and rely on known patterns. Randomness and Localised

Structures in Wolfram’s meaning, although existent in universe, are rather not used by the

human mind to store information, nor do they seem useful for the design of deterministic

software systems. Of course, information can arrive at- and influence a human mind in an

arbitrary manner and be associated randomly, at will. But the concepts it forms need to be

stable in order to build up knowledge. The research done in this work therefore relies on

reproducible structures making sense to human minds, namely Repetition and Nesting.

7.1.2 Conglomerate

Universe is the most general word describing everything humans think exists. Whether it

exists in reality or just as an illusion in their minds, is a fundamental question of philosophy

and will not be discussed here. The author of this document assumes that a Real World

exists and humans only reflect but not construct it in their minds.

202 7 Knowledge Schema

abstractionabstraction
imaginary phenomenaimaginary phenomena

universeuniverse
conglomerateconglomerate

dialecticsdialectics
absolute 01absolute 01

Figure 7.2: The Universe as to-be-abstracted Conglomerate (swirl from [258])

The whole universe can be seen as Conglomerate of everything in existence (figure 7.2).

Computer systems enable humans to abstract things to just two states labelled 0 and 1

(section 4.1.3), on a very low level. Human systems use more high-level methods for ab-

straction. Common concepts to describe a real-world environment are Particle, Dimension

or Force. Everybody will know more of them. But what is a particle?

7.1.3 Abstraction

Humans understand their environment by building simplified models (concepts) of it. These

are based on fundamental Abstractions like Item, Category or Compound (figure 7.3), which

are the topic of this section. Part of it was already published in [125].

Item

As first and most important abstraction, the human mind divides its real-world environment

into discrete, countable Items. Physicists call smaller items Particle. Plenty of other syn-

onyms exist. Software developers often talk of Object. This document preferrably uses the

more neutral name Item, since models are created not only of objects but also of Subjects.

7.1 Human Thinking 203

item

(human being)

category

(living thing)

sub

super

is
-a

compound

(brain)w
h
o

le

p
a
rthas-a

Figure 7.3: Abstractions of Human Thinking

Behavioural psychologists talk of this ability as Discrimination. It commonly focuses on a

specific real world phenomenon, leaving out parameters which are not interesting in the given

context. This is necessary because otherwise, a brain would have to model and capture the

whole universe (with every single particle being duplicated), which is obviously impossible.

Not only human beings, but also some higher animal species (like apes) are able to discrim-

inate their environment and to form terms to name it. (More on Term and Language in

section 7.1.6.) Additionally, they have a primitive Self Concept, that is a term for their own

personality. However, their cognitive abilities are limited in that concepts are only available

in the presence of the corresponding object (item). Jaeger [165] calls that Online Thinking;

cognition scientists speak of Terms of first Order or Sensoric Type of Terms.

Contrary to this, the more advanced Offline Thinking [165] allows humans to think about

objects (items) they currently cannot sense. Cognition scientists here speak of Terms of

second Order. They became possible by associating sensoric signals with terms of a language.

The resulting Net of Associations brought a number of advantages [165]:

- Decoupling of thinking from immediate motoric reaction

- Time Index in scenes so that past memories can be recalled, the future be planned

- Dual Representation of online and offline contents

- Self Awareness thanks to online and offline thinking

204 7 Knowledge Schema

- Associations increasing the expressiveness of terms

Self awareness is important for systems to know about their own capabilities, like those for

information input/output (i/o). More on that in chapter 8.

Category

Offline thinking (in terms of second order) enables humans not only to discriminate items

but also to categorise them into superior groups. Since it is impossible to exactly model the

real world in complete, compromises have to be made: People do not model every single

item in their minds but rather group them into Types (Classes) of common characteristics.

nature

unenlivened enlivened

plant humananimal

Figure 7.4: Systematics of Nature

This kind of classification stems from the earliest days of ancient science. Plato’s (429-347

B.C.) pupil Aristotle (384-322 B.C.), being the teacher of Alexander the Great, was the

first philosopher who logically captured and organised the world. It was him who sorted

items into clear groups which he called Categories. And it was him who first distinguished

between enlivened and unenlivened nature; who parted living forms into Plants, Animals

and Humans. The science of biology calls this classification a Systematics (figure 7.4).

Categorisation (classification) can be seen from two sides, depending on what direction of

that relationship one wants to emphasise. Taking Aristotle’s examples, Living Thing would

7.1 Human Thinking 205

be a Generalisation of Plants, Animals and Humans. Animal would be a Specialisation of

Living Thing.

Software developers often call categorisation an is-a relationship and talk of Super and

Sub categories (sometimes also Parent and Child categories). Section 4.1.15 described how

Object Oriented Programming (OOP) uses categorisation to let a sub class inherit attributes

and methods from its super class.

Compound

Composition is the third kind of abstraction that humans use to understand their environ-

ment. It is an important instrument for the human mind to associate information, that is

to acquire, store and recall Knowledge. Every item can be recognised as a Compound of

smaller items and can therefore also be called Tree or Hierarchy. The subject of Artificial

Intelligence (AI) talks of Concept or Schema [294].

The great philosopher and mathematician Gottfried Wilhelm Leibnitz (1646-1716) made

extensive use of the principle of hierarchy. His entire theory of Monades [192] is based on

it.

In software design, the terms Parent and Child are often used to describe both, the items

in a composition relation and the items in a categorisation (inheritance) relationship. To

avoid misunderstandings, this work sticks to the terms Super and Sub for categorisation

and to the terms Whole and Part for composition. Yet other terms to describe items of a

composition would be Container and Element.

One obvious analogy comes from Genealogy where parents have children who become parents

of their own children and so forth. Displaying these relations between family members in a

graph, leads to a tree which may represent both, a category tree (for property inheritance)

as well as a composition tree (for children ownership).

Taking the example of a Human Being, one could say that it is composed of organs such as

Eye, Ear, Heart, Brain, Arm and further, also smaller parts. John F. Sowa [294, p. 109]

writes on this:

From different viewpoints, the human body can be considered an aggregate of

organs, an aggregate of cells, or an aggregate of molecules. Each viewpoint

affects the terminology used to talk about the body, but not the body itself.

206 7 Knowledge Schema

That is, one and the same real world object may be represented in many different ways.

It is important to note the unidirectional kind of relations: A human being is composed

of organs but an organ is never composed of a human being! Another example is that of

a Book : physically, it may be composed of a Paperback Cover and Paper Pages; logically,

however, it is usually separated into Part, Chapter, Section, Paragraph, Sentence, Word

and Character. Obviously, knowledge representation always depends on what one wants

to express in which context. Philippe Ameline who works in the Nautilus-Odyssee project

[215], writes in [168]:

Lets take a comparison with Geography: you can build an ontology (which con-

sists of compound structures) in order to describe natural objects (mountains,

rivers, . . .). But if you build artificial frontiers and call them Countries, you

cannot semantically include these concepts inside the geographical domain. –

That is the very reason why human beings, very frustrated, had to invent the

political domain ;-) . . . I think that there (are similar differences) in medicine

(as in) the geographical domain.

Not only States may be represented as compound; Procedures may be hierarchical as well.

The process Take Book from Library, for example, may have the following structure:

- Check Catalogue

- Investigate suitable Books

- Note Registration Number

- Obtain Book

- Look for Shelf

- Take off Book

- Borrow Book

Returning to human thinking, one realises that in the end, everything in universe can be put

into variable hierarchical models, that is consists of smaller items and belongs to a bigger

item. From the physical point of view, nobody knows where this hierarchy really stops,

towards Microcosm as well as towards Macrocosm. There is no absolute, basic item. A

Particle as concept exists only in the human mind, placed somewhere between micro- and

macrocosm, with hypothetic borders.

7.1 Human Thinking 207

7.1.4 Interaction

As was explained before, most abstract models of the human mind have a composed nature,

that is consist of smaller parts. If being compounds, they hold certain information about

their parts, namely their name, model and abstraction. More on this in section 7.3. But

isn’t there other detailed knowledge a compound must have about its parts? What about

the order or position, the size or colour of parts within their compound?

Meta Information

To find an answer, the science of Psychology needs to be called in. It distinguishes between

various aspects of a (visual) impression of the human mind, as there are Movement, Shape,

Depth or Colour [298]. Looking closer at these, one quickly realises that they contain

representations of the classical physical dimensions that humans use to describe the world:

- Movement stands for changing the state of something over Time

- Shape is how items would appear in a two-dimensional world, as known from Geometry

- Depth (which is possible to recognise thanks to the human’s ability for stereo vision)

adds a third dimension to shapes, so that these become three-dimensional and form

a Space

- Colour, not being considered a dimension, tells about how items reflect Light

Another physical value often used to abstract and describe the world is Mass. Again, it is

not considered to be a dimension. If, according to modern physics, not all of the impressions

listed above are dimensions, what else is common to them? – All are used to express a special

Interaction. (Einstein [77] would probably prefer the term Relation, to better point out the

relative nature of at least the space and time, in which a whole and its parts interact.) To

avoid conflicts with other sciences, this document sticks to the term Conceptual Interaction.

The following paragraphs will describe some conceptual interactions in more detail and give

examples for their understanding.

Space

To the common concept of an Atom belong a Core and Electrons. The atom provides the

Space that the core and the electrons can fill with their extension. For core and electrons,

208 7 Knowledge Schema

the atom represents the small universe they live in. Moreover, the atom knows about the

Position (more correct Trajectory) of each electron. Thus, one can say that the atom as

a Whole interacts with its Parts by means of space. Electrons, on the other hand, know

nothing about their own position within the atom; they do not know about the existence of

the atom at all.

A different example would be the Graphical Frame of a software application. It has an

expansion that cannot be crossed by its children. Children may be a Menu Bar, Tool Bar

and Status Bar. In order to be positioned correctly, the frame has to know about their

coordinates or orientation. Again, this can be seen as an interaction over space.

A third and last example that was already stressed in previous sections would be the Human

Body consisting of organs like Heart, Brain and Arm. Each organ has its special position

within the body concept. However, it is always useful to keep in mind that models (concepts)

are an abstraction, an Illusion. Taking the example of the human body, how is it constituted?

Does belong to it the:

- Air in its lungths

- Sweat leaving its skin

- Radiation crossing it

- Food being eaten

The human body, in reality, is not stable; it changes permanently, in all dimensions. Human

thinking only makes it stable by characterising it with arbitrary properties, picked out of

millions. It actually exists (in the same state) for just an infinitesimal instant in time. The

same counts for any other real world items. Some elementary or yet smaller particles have a

lifetime of only a fraction of a second. But even within this minimal lifetime, they probably

take on millions of different states.

Mass

A Solar System, as concept, has very much in common with the atom. It has a star, the Sun,

as its core and it has Planets orbiting around that star. Besides the conceptual interaction

over space that also exists here, there is another relation worth paying attention to: Mass.

It has great influence on the Gravitational Force.

7.1 Human Thinking 209

Conceptually, the solar system can be treated as a closed field of Mass, the sun representing

the centre, the planets additions. The solar system as a Whole knows about the masses of

its Parts, what can be considered a conceptual interaction.

Another example, taken from informatics, are Artificial Neural Networks (ANN) consisting

of Neurons and weighted connections between them. Ideally, the ANN knows about its

neurons – or, depending on its design, the layers that contain them – and the corresponding

connections. This structural information needs to be complemented by Weight (Mass)

information indicating the strength (importance) of an association between neurons.

Time

A third kind of conceptual interaction that humans use to place themselves and the envi-

ronment into their very own model of the universe is Time. Section 7.1.3 showed on the

example of Take Book from Library that any Process can be split into Sub Processes and

thus represents a structure with Hierarchical Character.

In most cases, the Order in which sub processes are executed, is very important. Without

it, no meaningful Algorithm could ever be created. A process thus needs to know about the

Occurrence of its sub processes and this sequence information is usually stored in units of

time.

Moreover, the Whole process sets a time frame that all Part processes, in sum, cannot

exceed. Their Duration is limited. Again, process and sub processes have some kind of

conceptual relation; in this case over time.

Constraint

The previous sections have discussed three kinds of conceptual interaction: Space, Mass and

Time. They are used by a model (concept) to position parts within its area of validity.

Yet this meta knowledge is not enough. Frequently, parts have to be constrained to maintain

the validity of the whole model. The concept of a Table, for example, may consist of a Top

and one to four Legs. The additional meta information herein is the constraint of the number

of legs to at least one and at most four.

Another example regards the area of valid values that parts can take on. The Temperature

of an alive human body lies somewhere between a Minimum of +30◦C and a Maximum of

210 7 Knowledge Schema

+40◦C (broad-minded estimation). A corresponding model has to remember these extrema

in order to be able to limit numbers to the correct temperature range.

7.1.5 Intrinsic or Extrinsic Properties

Properties may not only represent the Position of a part in space/ mass/ time, but also its

Size in the same dimensions. For space, it may be called Expansion, for mass Massiness,

and for time Duration. While a size is always represented by the Difference of two values,

a position is represented by a Point. No matter what the kind of property – all of them are

stored as meta information in the compound model, that is external to the parts.

The abstraction principles used in this work thereby differ from the Benediktine Approach

as introduced by Michael Benedikt in his article on the structure of cyberspace [25]. That

distinguishes extrinsic and intrinsic spatial dimensions, to which the properties (attributes)

of an item (object) may be mapped. While extrinsic dimensions in a graphical dialogue, for

example, would be the positions of the buttons contained in it (location in space), intrinsic

dimensions would be those that are contained directly in the buttons which they describe

(shape, size, colour).

In other words, the Benediktine Approach proposes to keep some properties outside the

described model (meta knowledge) and others inside the model (self-knowledge). Having

reflected on the principles of human thinking, and speaking in Benediktine’s terminology,

this work, however, proposes a knowledge schema (section 7.3.2) which uses solely extrinsic

properties.

7.1.6 Language

Having investigated the basic principles of knowledge modelling as applied by the human

mind, this section now deals with the question how thoughts are put into language, in order

to be communicated and stored.

Philosophers, evolution biologists, linguists and further scientists investigate human thinking

and in particular the Relationship between language and thinking. Many of them hold

the view that Language, Cognition and Awareness have developed hand-in-hand, during

phylogeny of man.

7.1 Human Thinking 211

After the paleoanthropologist Andre Leroi-Gourhan [165], the upright, two-legged walk

caused a change in the geometry of the human skull which lead to the creation of new

brain areas that today hosted important functionality for higher thinking. Two prominent

areas situated in the Cerebral Cortex were the Broca Area (for language production) and

the Wernicke Area (for language recognition). Jaeger [165] writes that it must have been

in that time that the human brain had developed the fundamentally important ability to

represent objects of the environment in a completely new, advanced kind of Terms.

A Term is an Abstraction which stands for or describes (a part of) the real world. It is terms

(also called Words), and combinations of these, which form a Language. Combinations of

terms are the Phrase or Sentence. All of these are also called Unit. Since forming words

is much the same as building knowledge models, it is no surprise to find again the three

abstraction principles of Discrimination, Categorisation and Composition, only that the

second of these is called Derivation here [2].

The rules (Patterns) for combining terms are the Syntax (or Grammar) of a language. The

meaning expressed by terms and sentences is their Semantics [71]. Collections of terms of a

language are called Vocabulary, sorted collections a Lexicon.

For the philosopher Aristotle, reality existed completely independent from human cognition

and language was not needed to understand things. Wilhelm von Humboldt (1767-1835) and

contemporaries saw language as the Organ forming Thoughts. Today, philosphers distinguish

three levels of language exerting influence [165]:

- The way its vocabulary divides the world (Lexicon Structure)

- Its physical appearance (Materiality)

- General properties (Is language just reflecting or constructing reality?

Mapped to informatics, one might evaluate these three points as follows: For point one, some

description was given in section 4.6.5 (Terminology). It is the actual arts of programming to

structure and divide a particular domain into expressive parts, using terms and constructs

of these. The second point is fundamentally important as it defines the final abstractions of

terms of a language in software. As mentioned in section 4.1.3, in informatics, every piece

of information (term) gets abstracted to only two states: 0 and 1. Point three is left to the

philosophers to further philosophise.

But what are the basic representations of a term, above the digital level?

212 7 Knowledge Schema

In the first instance, one needs to distinguish between the social and egocentric form of

language. The latter may exist as some kind of inner language (also called internalised

natural language) of the human brain and is what is normally called Thinking. Scientists are

not absolutely sure about its existance yet but the research works of the Russian psychologist

Lew Demjonovitsch Wygotski and the philosopher Peter Carruthers [165] show into that

direction. Some even define thinking as suppressed motoric action [165, p. 41-42].

Materiality (Latin/ Greek) Medium Organ Function

Visually/ Optically Light Eye Seeing

Auditorily/ Acoustically Air Ear Hearing

Odorously/ Osphrantically Air Nose Smelling

Gustatorily/ Geustically Substance Mouth/ Tongue/

Palate

Tasting

Tactorily/ Haptically Mass Hand/ Skin Fumbling/ Groping/

Feeling

Inner Ear Equilibrate/ Bal-

ance

Proprio Receptors Perceive Motion/

Movement

Table 7.1: Materiality of Language, according to Five Human Senses [39]

The social (communicative) form of language is determined by the five Human Senses (table

7.1). Mankind has invented manifold kinds of abstracting and associating real world items,

for example as Gesture, Sound, Speach, Music, Image, Script, Video, Smell, Taste or Touch.

They all can serve as terms for communication, being part of a language.

It is important to notice that a term can not only be expressed by a Word/ String, what

is frequently associated with it. As well, an image or sound can represent a term. In

information science, the expressions (or Materialities) of language are the basic data blocks

for information storage. Signs/ Characters, Texts, Images, Sounds and Videos are stored

in special Resource Files or Databases (DB). Their data are not merged into the actual

programming language code; they are just referenced from- and handled there.

7.1 Human Thinking 213

7.1.7 Quality and Quantity

Languages, in general, do not only contain terms that associate some Item, also called a

Quality; they do also offer terms representing a Number, also called a Quantity.

The science dealing with numbers is Mathematics. It uses different types of numbers, for

example Integer, Fraction and Complex. A fraction is a combination of two integers (Nu-

merator and Denominator). The two parts of a complex (Real and Imaginary) consist of

one fraction each. Again, the composed nature even of numbers becomes obvious.

Many mathematical number types have their counterpart in programming languages. Two

common ones that are mostly implemented as primitive types are Integer (Byte, Short, Long)

and Float (Double). The variations given in parentheses differ from the basic type only in

their range. Further, more complex number types need to be extra-coded, by combining

primitive types.

Numbers can be organised in a Numbering System whose basic rules involve:

- Ordering items

- Grouping ordered items

- Expressing groups and items in a consistent way

Typical examples are the Roman- and the modern Arabian numbering system, the latter also

being called Algorism. For historical reasons (10 fingers of human hands), most systems of

that kind use a number base of 10. A Number Base value is implied by any use of numbers,

as [293] annotates:

The simplest base value to use in a numbering scheme is 1. In this scheme, the

number 2 is two things, or two groups of ones. The number 7 is seven things

or seven groups of ones. Evidence of numbering in this fashion has been found

in archaeological (excavation) pieces, dating as far back as 37,000 years.

Other examples of number base systems are:

- Binary (Base 2)

- Octal (Base 8)

- Decimal (Base 10)

- Duodecimal (Base 12)

214 7 Knowledge Schema

- Hexadecimal (Base 16)

- Sexagesimal (Base 60)

In order to understand their environment, humans not only need quality terms, but also

quantity terms (numbers) to count qualities. The primitive forms of both serve as final

abstraction in the virtual models existing in the human mind.

7.2 Design Reflections

The previous sections investigated principles of human thinking, that is the structures and

relations used by the human mind to build abstract models of its real world environment.

The following sections focus on the impact of just these principles on software design and

suggest a number of changes while rethinking state-of-the-art concepts.

7.2.1 Pattern Systematics

Software Patterns (section 4.2) are a popular architecture instrument of current systems

and languages – in the first line, however, of Object Oriented Programming (OOP) (section

4.1.15). They describe design solutions that belong to a higher conceptual level, as opposed

to the programming paradigms which are inherent to languages. A common criticism on the

existence of patterns is put into words by the free Wikipedia encyclopedia [60] which writes:

Some feel that the need for patterns results from using computer languages or

techniques with insufficient abstraction ability. Under ideal factoring, a concept

should not be copied, but merely referenced. But if something is referenced

instead of copied, then there is no pattern to label and catalog.

In other words, patterns would become superfluous, if they could be applied just once to

a system, in a manner that allowed any other parts of that system to reference and reuse-,

instead of copy them.

Cybernetics Oriented Programming (CYBOP) wants to eliminate the need for repeated

pattern usage, and such enable application programmers, and possibly even domain experts,

to faster create better application systems. On the way to reaching such sublime aims, a

first step is to look at current pattern solutions and try to identify what their common

characteristics are. This was already done in section 4.2, which used traditional proposals

7.2 Design Reflections 215

[41, 108] to systematise patterns and divided them according to the first categorisation level

shown in figure 4.14, into Architectural-, Design- and Idiomatic patterns.

This section proposes a new systematics to classify software patterns. It is based on the

idea of classifying them after the principles of Human Thinking, as described in section 7.1

before. These fundamental principles are: Discrimination, Categorisation and Composition.

Applied together, they may form an abstract Schema (introduced later, in section 7.3.2).

The latter two activities of abstraction – categorisation and composition – are based on

special Associations (figure 7.3), between a Super- and a Sub model and between a Whole-

and a Part model, respectively. Most patterns heavily rely on associations, too. This work

therefore suggests to [129]: Take the kind of association as criterion to sort patterns in a

completely new way.

Category Equivalent Representative Advice

Itemisation Discrimination Command, Data Transfer Object, State,

Memento, Envelope-Letter, Prototype

1:1 Association Composition Delegator, Object Adapter, Proxy (Sur-

rogat, Client-/ Server Stub), Wrapper,

Handle-Body, Bridge

1:n Association Composition Whole-Part, View Handler, Broker (Me-

diator), Master-Slave, Command Proces-

sor, Counted Pointer, Chain of Responsi-

bility

Recursion Composition Composite, Interpreter, Decorator,

Linked Wrapper

Bidirectionalism – Observer (Callback, Publisher-

Subscriber), Forwarder-Receiver, Chain

of Responsibility, Visitor, Reflection

Polymorphism Categorisation Template Method, Builder, Factory

Method, Class Adapter, Abstract Fac-

tory (Kit), Strategy (Validator, Policy),

Iterator (Cursor)

Grouping Categorisation Layers, Domain Model, MVC

Global Access – Singleton, Flyweight, Registry, Manager

Table 7.2: Pattern Systematics

216 7 Knowledge Schema

Table 7.2 shows a systematics of the new pattern categories with their equivalents in human

thinking, some representative example patterns and a recommendation for their usage in

software engineering. Patterns matching into more than one category are placed after the

priority: Recursion over Polymorphism.

7.2.2 Recommendation

The first category Itemisation (objectification) is the base of any modelling activity and

clearly necessary.

The next three categories 1:1 Association, 1:n Association and Recursion are special kinds of

associations that rely exclusively on unidirectional relations and result in a clean architecture

which is why their usage is strongly recommended.

Bidirectionalism, on the other hand, is an ill variant of the three aforementioned categories

and should be avoided wherever possible. Patterns in this category are one reason for endless

loops and unpredictable behaviour since it becomes very difficult to trace the effects that

changes in one place of a system have on others (section 4.2.2).

Polymorphism is a good thing. It relies on categorisation and due to inheritance can avoid

a tremendous amount of otherwise redundant source code. However, it also makes under-

standing a system more difficult, since the whole architecture must be understood before

being able to manipulate code correctly. Unwanted source code changes caused by inheri-

tance dependencies are often described with the term Fragile Base Class Problem (section

4.1.15).

Grouping models is essential to keep overview in a complex software system. A very promis-

ing technology to support this are Ontologies [127]. A lot of thought-work has to go into

them but if they are well thought-out, they are clearly recommended.

The habit of globally accessing models is banned since OOP (section 4.1.15) became popular.

However, it is not banned completely. Patterns like Singleton encapsulate and bundle global

access but they still permit it. They disregard any dependencies and relations in a system,

such are a security risk and reason for untraceable data changes. This work sees the whole

category of Global Access as potentially dangerous and cannot recommend its patterns

(section 4.2.3).

To sum this up: The different kinds of software patterns investigated in section 4.2 showed

7.2 Design Reflections 217

various advantages, but also weaknesses (bidirectionalism, global access, partly polymor-

phism), which became obvious through the new pattern systematics introduced in the pre-

vious section. It now turns out that the weaknesses show up in exactly those categories of

patterns, which do not follow the principles of human thinking. The resulting recommen-

dations of this section were considered in the design of the Cybernetics Oriented Language

(CYBOL) and the Cybernetics Oriented Interpreter (CYBOI), described in the later chap-

ters 9 and 10.

7.2.3 Model Metamorphosis

One way to recognise the importance of Composition, that is of models with hierarchical

character, is to compare several traditional modelling approaches, as first suggested by

Thomas Beale in [18, p. 11-18]. This Metamorphosis of Models is empathised in the

following paragraphs.

Single Model

Today, the most common design approach for standard application software is to create a

Single Model of types whose semantics is often described in form of an Entity Relationship-

(ER) or Object Oriented (OO) model, the latter sometimes illustrated using diagrams of the

Unified Modeling Language (UML).

As example, figure 7.5 shows a UML Class Diagram (CsD). In its upper half, one can see

a class Person associated with the classes Name and Address, as modelled at design time.

They may be part of a much larger model. The lower half of the figure shows the objects

(instances) at runtime, filled with concrete values. There are a number of problems with

this approach:

Inflexible Architecture First and foremost, the static coupling of classes leads to an

inflexible design. The names and number of attributes and methods as integral part of a

class cannot be changed dynamically later-on; only their values can. The class structure

represents a solution to a current problem. If it is static, then future requirements cannot

be considered. Adaptation issues and workarounds, affecting stability and security, are thus

to be expected.

218 7 Knowledge Schema

address

 post_code : int

 country : string

person

 sex : boolean

 birth_date : date

name

 first_name : string

 last_name : string

 title : string

address

 12345

 deutschland

person

 true

 1970-01-01

name

 max

 mustermann

 dr.

Figure 7.5: Single Model Approach (adapted from [18])

Concept Mix Further, specialised domain concepts identified during requirements analysis

(such as a Patient being a kind of Person) are often mixed up with more general concepts

as found during design (for example the application of a proper Role architecture instead

of simple inheritance for the person-patient relation). The lack of a proper separation

between pure domain knowledge (like a patient receiving a medication) and system control

software (like logging facilities or persistence mechanisms) was already explained in detail

in the previous chapter 6. It frequently leads to strong coupling between system layers and

complicates software design.

Synchronisation Problems The mix of application knowledge with system control soft-

ware also causes synchronisation (communication) problems within software development

projects. Domain experts and software developers depend on each other: Developers need

to first understand domain knowledge before being able to correctly implement it into soft-

ware. Experts bring their knowledge into a more software-friendly form, during analysis.

Complicated Processing Due to the great variety of software architectures, it is pretty

hard to capture and process data from different systems in a uniform way, for reasons

of Data Mining, for example. Unpredictable architecture changes caused by new domain

requirements hamper the creation of reliable rules for Decision Support.

7.2 Design Reflections 219

Steady Upgrading Applications that were designed in a Single Model manner require

steady upgrading. Whenever new domain knowledge gets worked into the system or existing

knowledge gets adapted to new requirements, the software design may change – even in

important parts that would better remain stable. Accordingly, systems of that kind cannot

be labelled future-proof.

No Standardisation Finally, a true standardisation of single model systems is hardly

reachable. Requirements are just too different between the systems, and they change much

too often. A standard architecture of that kind won’t remain stable for very long.

Semi Structured Model

A slightly improved version is the Semi Structured Model. It relies on the usage of Named

Values (sometimes called Tagged Values), which are stored in a dynamically extensible

structure such as a list. That way, future attributes can be added smoothly, without having

to change the overall model.

address

person

 sex : item

 birth_date : item

name item

 name : string

 value : object

address 12345

deutschland

name max

mustermann

dr.

person

 true

 1970-01-01

Figure 7.6: Semi Structured Model Approach (adapted from [18])

The example in figure 7.6 shows a class Person referencing two linked lists, one called Name

and another called Address. The list elements are of type Item. The dynamically extensible

220 7 Knowledge Schema

structure becomes more obvious in the lower half of the figure, showing how the single list

elements reference each other. However, also here one can find disadvantages [18]:

- Not all fields are dynamically changeable. Some are concrete attributes.

- Only single lists of named values which do not allow for more complex internal struc-

tures are used.

- Variability in structure is not generally dealt with.

- Type information is lost for all list elements, since they are of one common type.

- The system does not know anymore which elements are required.

Hierarchical Model

The Hierarchical Model as yet more generalised form of data representation is based on

Composition as one of the principles of human thinking (section 7.1.3). Its tree structure

– ideally in form of a Directed Acyclical Graph (DAG) (section 4.6.5) – allows dynamic

extensions of data types, by simply adding child nodes (parts) to a parent node (whole), in

the knowledge tree.

model

 name : string

primitive

 value : object

compound

address 12345

deutschland

person

true

1970-01-01

name max

mustermann

dr.

Figure 7.7: Hierarchical Model Approach (adapted from [18])

The upper half of figure 7.7 shows the Composite software pattern (section 4.2.2). Its classes

do not contain hard-coded attributes; two exceptions are the Primitive class’ attribute value

7.2 Design Reflections 221

and the Compound class’ dynamically extensible structure. The structure may be a list, and

it stores all of the compound’s parts in it. Parts may be primitiva or compounds themselves.

As already proposed by the Semi Structured Model before, each part is identified by a name

that is unique within its compound. The diagram in the lower half of the figure clearly

shows the hierarchical tree structure of runtime instances.

The only open issue when using purely hierarchical models is that the semantics – the

actual domain concepts – is lost. Knowledge models, together with their parts and meta

information about these (position, size, colour, constraints – as described in section 7.1),

thus need to be defined somewhere else. The later section 7.3 proposes a generic knowledge

schema for doing this.

7.2.4 Structure by Hierarchy

The principle of Composition not only allows the creation of highly flexible models, the Hier-

archies it makes up allow humans to combine several concepts in a common, greater model.

Structure by Hierarchy as idea has been applied to numerous Knowledge- and Domain Mod-

els, especially in the fields of Artificial Intelligence (AI) and Knowledge Engineering (section

4.5). But obviously, it has not been used for the design of complete systems yet, even though

this seems quite logical.

To demonstrate the omnipresence of Hierarchies in a system, the parts of the Model View

Controller (MVC) software pattern described in section 4.2.1 shall be considered once again.

The MVC is a very representative example as it is used in one or another form by a majority

of systems, today.

The MVC pattern (figure 7.8) consists of a View that is mostly implemented as Graphical

User Interface (GUI) frame with panel, menubar, menu items and smaller components

which, in this order, are all part of the frame’s hierarchy. Then, there is the Controller.

The Hierarchical Model View Controller (HMVC) pattern (section 4.2.1) suggested to use

a controller hierarchy consisting of MVC Triads. Finally, there is the Model of domain

concepts which not only knowledge systems can structure hierarchically. Reflecting these

facts, one question is at hand:

If View, Controller and Model ideally have a hierarchical structure,

why not creating whole software systems after this paradigm?

Isn’t every system, in essence, just a Tree of items?

222 7 Knowledge Schema

view controller

model

Figure 7.8: Adapted (H)MVC Pattern with Hierarchical Elements

7.2.5 Association Elimination

To pursue the idea of a purely hierarchical software system, it seems useful to investigate in

which way domain data models can get simplified. This section therefore demonstrates how

the principle of Hierarchy may be applied to obtain an Ontology [127].

An Electronic Health Record (EHR) will serve as example domain model, whose simplified

structure is shown in figure 7.9. It consists of numerous parts whereof two may be Address

and Problem. Following the Episode-based EHR recommendation [341], Problem may, be-

sides others, consist of parts of type Subjective and Objective. All these associations between

part models are needed to navigate through the overall domain model.

A frequent design decision in classical Object Oriented Programming (OOP) is to sum up

common properties of Sub models by introducing a Super model (category). It should

never be Properties, but rather the Granularity of objects leading to the creation of a super

category, as the later section 7.2.8 will recommend. The OpenEHR project [22] suggests to

let the above-mentioned sub models inherit from the more coarse-grained super categories

Record, Unit and Heading.

Whichever reason – once the super categories are there, they should be associated similarly

to their sub categories, that is in the same direction, using solely unidirectional depen-

7.2 Design Reflections 223

problem

address

subjective

health_record

objective

record

unit

heading

health_record

problem

address

subjective

objective

record

unit

headingmodel

Figure 7.9: Association Elimination in an EHR

dencies. (The problematic nature of bidirectional dependencies was elaborated in section

4.2.) Afterwards, all associations between sub categories become superfluous as every sub

category can reach its sibling across the super categories’ association (figure 7.9). In other

words: Super- eliminate Sub Associations.

Here a short Java code example for how the HealthRecord may retrieve a reference to Ad-

dress:

Address a = (Address) get_element("address");

HealthRecord inherits the get element method from its super category Record. Record holds

differing sub models of category Unit and other instances. The get element method delivers

back a general Model that still needs to be down-casted to the expected sub category Address.

The definition of models, their dependencies (defined by associations) and granularities

(defined by inheritance) in a software system results in several Layers of models of common

granularity (figure 7.10). These layers are often called Ontological Level as they, together,

form an Ontology (sections 4.6.7, 7.3.1).

An ontology of that kind can, of course, be created for every knowledge model. The finan-

cial sector – like an insurance company, for example – may use an Insurance Record with

comparable structure.

224 7 Knowledge Schema

model

problem

address

subjective

health_record

objective

record

unit

heading

insurance_record

description

principle

blood_pressure

body_mass_index

term

Figure 7.10: Model Container and Ontological Levels

The idea to structure software as a system of Layers was also suggested by the equally named

pattern in section 4.2.1. The difference between the two is that the Layers pattern divides

a system only by its Functionality, for example into User Interface, Domain, Data Mapper

and Data Source. An Ontology additionally groups model items by their Granularity. By

inheriting from a common superior category, sub categories indicate that they logically

belong to the same Layer.

Continuing the structuring process of introducing more and more common super categories,

for all equally-granular items, the development culminates in one top-most super category

of all other categories in the system, which this paper calls Model. It is as general as the

java.lang.Object class for the Java class library [112], only that it additionally represents

a Container that can store models of any category, as explained in [126]. In other words,

Model provides the meta functionality of a container behaviour to all other categories in a

system.

7.2.6 Hierarchical Algorithm

Of course, algorithms, workflows and other activities over time can be structured hierarchi-

cally as well.

7.2 Design Reflections 225

heal_illness

treatdiagnose prevent

examine_patientevaluate_history

Figure 7.11: Heal Illness as Hierarchical Algorithm, taken from Medicine

To stick with the domain of medicine: A Medical Doctor ’s (MD) activity is to Heal an

Illness. Part processes the MD has to carry out commonly are to Diagnose, to Treat and

to Prevent an illness (figure 7.11). Further structurings are possible. To the process of

diagnostics belong activities like Evaluate History or Examine Patient.

7.2.7 Framework Example

A much more complex example than the EHR structure demonstrated in section 7.2.5 is

the Reference Information Model (RIM) framework of the Health Level Seven (HL7) stan-

dardisation organisation (chapter 11). It is a quite typical software model, developed in a

Single Model Approach (section 7.2.3), as it may similarly exist in other business areas. The

coloured legend in figure 7.12 helps distinguish the various parts of the RIM. The part to

be picked out to have a closer look here is the several kinds of RIM Entities (figure 7.13).

Diving yet deeper into the framework, one will find the Person class, being a sub class of

Living Subject (figure 7.14). Since the RIM is an Object Oriented (OO) framework, each

class will probably have access methods for all of its attributes. For the Person class, the

access methods for birthdate and address are shown in the figure. The right-hand side also

shows the typical one-line contents of the set/ get methods, although more code may be put

into them, for reasons of notification, update or others more.

226 7 Knowledge Schema

Champus_coverage

handicapped_program_cd : CE

non_avail_cert_on_file_ind : BL

retirement_dttm : TS

stat ion_id : II

Referral

authorized_visits_qty : REAL

desc : ED

reason_tx t : ED

Healthcare_finances

Message_control

Acts (Services)

Appointments &

scheduling

Roles

 HEALTH LEVEL 7

 REFERENCE INFORMATION MODEL

 RIM_0099

released September, 2000 reflects RIM changes

through Harmonization on 8/31/2000

Observation

value : ANY
derivation_expr : ST

Medication

form_cd : CD

route_cd : CD

dose_qty : PQ

strength_qty : PQ

rate_qty : PQ

dose_check_qty : PQ

Procedure

entry_site_cd : SET<CD>

Supply

qty : PQ

Diet

energy_qty : PQ

carbohydrate_qty : PQ

Condition_node

Consent

Enitites

Document_service

completion_cd : CV

set_id : II
storage_cd : CV

version_nbr : INT

copy_dttm : TS

originat ion_dttm : TS

Billboard produced by:
Rochester Outdoor Advertis ing

Healthcare_provider

spec ialty_cd : CV

Container

capacty_qty : PQ
height_qty : PQ

diameter_qty : PQ

barrier_delta_qty : PQ

bottom_delta_qty : PQ

seperator_type_cd : CD

cap_type_cd : CD

Access

gauge_qty : PQ

entry_site_cd : CD

body_site_cd : CD

Device_slot

Device_request

reques ted_qty : REAL

type_cd : CE

Device_group

id : II

0..*

0..1

requests 0..*

is_requested_by 0..1

Device

slot_size_increment_qty : PQ

manufac turer_model_nm : ST

last_calibrat ion_dttm : TS

0..*

1

is_scheduleable_uni t_for

0..*

is_sc heduled_by1

0..*

1

requests0..*

is_requested_by1

0..*

1..*

contains0..*

be longs_to1..*

Notary_public

notary_county_cd : CE

notary_s tate_cd : CE

Employee_Employer

addr : AD
hazard_exposure_tx t : ED

job_c lass_cd : CV

job_t itle_nm : ST

telecom : TEL

protective_equipment_txt : ED

salary_qty : MO
salary_type_cd : CV

status_cd : SET<CS>

occupat ion_cd : CE

job_s tatus_cd : CV

Sample

body_site_cd : CE

category_cd : CV
content_category_cd : CV

descript ion_txt : ED

Living_subject

birth_dttm : TS

deceased_dttm : TS

deceased_ind : BL

eye_color_cd : CE

qty : REAL
diet_category_cd : CS Material_relationship

type_cd : CS

inversion_ind : BL

effect ive_tmr : IVL<TS>

position_nbr : LIST<INT>

qty : PQ

Material

form_cd : CV

danger_cd : CE
desc : ED

qty : SET<PQ>

status_cd : SET<CS>

effect ive_tmr : IVL<TS>

handling_cd : CE

category_cd : CE

0..* 1

has_source

0..* is_source_for 1

0..* 1

has_target

0..*

is_target_for

1

Patient_service_location_group

id : II

Patient_service_location_request

type_cd : CV

0..1

0..*

is_requested_by

0..1

requests
0..*

Patient_service_location_slot

Facili ty

mobility_ind : BL

addr : AD

desc : ED

licensed_bed_nbr : REAL

telecom : TEL
s tatus_cd : SET<CS>

category_cd : CV

s lot_s ize_increment_qty : PQ

1..*

0..*

be longs_to

1..*

conta ins

0..*

1

0..*

is_requested_by

1

requests
0..*

0 ..*

1

is_scheduleable_uni t_for 0..*

is_scheduled_by

1

Inpatient_encounter

length_of_stay_qty : PQ

Practitioner_provider

posit ion_cd : CV

primary_care_ind : BL

s lot_size_increment_qty : PQ

Practitioner_Certifier

board_certificat ion_type_cd : CV
certificat ion_dttm : TS

recertificat ion_dttm : TS

res idency_field_cd : CE

Military_person

military_branch_of_service_cd : CV

military_rank_nm : ST

military_status_cd : CV

Location

gps_tx t : ST

Software_module

software_version_nm : ST

Logical_entity

logical_entity_type_cd : CS

definit ion : ED

Bad_debt_bil ling_account

bad_debt_recovery_qty : MO

bad_debt_trans fer_qty : MO
trans fer_to_bad_debt_dttm : TS

trans fer_to_bad_debt_reason_cd : CV

Encounter_drg

approval_ind : BL

assigned_dttm : TS

confident ial_ind : BL

cost_out lier_qty : MO

desc : ED

grouper_review_cd : CE
grouper_vers ion_id : II

outlier_days_nbr : REAL

outlier_reimbursement_qty : MO

outlier_type_cd : CV

0..*

1

is_assigned_to
0..*

is_assigned 1

Language_abil ity

mode_cd : CV

proficiency_level_cd : CV

Manufactured_material

expirat ion_dttm : TS

lot_nbr : ST

Health_chart

status_cd : SET<CS>

Health_chart_deficiency

assessment_dttm : TS
desc : ED

level_cd : CV

type_cd : CV

1

0..*

has_an_assessm ent_of

1

is_assessed_against

0..*

Bad_debt_collection_agency

0..*

1

is_assigned_to
0..*

is_assigned

1

Diagnostic_related_group_definition

base_rate_qty : MO
capital_reimbursement_qty : MO

cos t_weight_qty : MO

id : II

major_diagnost ic_category_cd : CE

operat ing_reimbursement_qty : MO

reimbursement_qty : MO
standard_day_qty : PQ

standard_total_charge_qty : MO

trim_high_day_qty : PQ

trim_low_day_qty : PQ

1

0..*

defines 1

is_defined_by0..*

Guarantor

financ ial_class_cd : CE

household_annual_income_qty : MO

household_s ize_nbr : REAL

Insurance_certification_contact

participation_type_cd : CE

Healthcare_benefit_product_purchaser

Act_collection

name : ST
desc : ED

effect ive_tmr : IVL<TS>

Organization

org_nm : SET<ON>

standard_indus try_class_cd : CE

addr : SET<AD>

telecom : SET<TEL>

0..1

1

is_a_ro le_of0..1

takes_on_role_of 1

1..1

0..*

estab l ishes

1..1

is_establ ished_by

0..*

Bill ing_information_item

condit ion_cd : CE

occurrence_cd : CE

occurrence_dttm : TS

occurrence_span_cd : CE
occurrence_span_from_dttm : TS

occurrence_span_thru_dttm : TS

quantity_nbr : REAL

quantity_type_cd : CV

value_amt

value_cd : CE

Guarantor_contract

billing_hold_ind : BL

billing_media_cd : CE
charge_adjustment_cd : CE

contract_duration_cd : CE

contract_type_cd : CE

effect ive_tmr : IVL<TS>

interest_rate_nbr : REAL

periodic_payment_qty : MO
priority_ranking_cd : CV

1

1..*

guarantees_paym ent_under

1

has_paym ent_guaranteed_by

1..*

Patient_Provider

Act_relationship

type_cd : CS

inversion_ind : BL

sequence_nbr : INT

priority_nbr : INT

pause_qty : PQ
checkpoint_cd : CS

split_cd : CS

join_cd : CS

negation_ind : BL

conjunct ion_cd : CS

Act_act_collection_relationship

sequence_nbr : REAL

priority_nbr : REAL

note_txt : ED

1

0..*

has_parts

1

is_part_of

0..*

Patient_bill ing_account

account_id : II

adjustment_cd : CV
authorization_information_txt : ED

billing_status_cd : CV

cert ification_required_ind : BL

current_unpaid_balance_qty : MO

delete_dttm : TS

deleted_account_reason_cd : CV
expected_insurance_plan_qty : REAL

expected_payment_source_cd : CV

notice_of_admission_dttm : TS

notice_of_admission_ind : BL

patient_financial_class_cd : CV

price_schedule_id : II
purge_status_cd : CV

purge_status_dttm : TS

report_of_eligibility_dttm : TS

retention_ind : BL

signature_on_file_dttm : TS

special_program_cd : CV
stoploss_limit_ind : BL

suspend_charges_ind : BL

total_adjus tment_qty : MO

total_charge_qty : MO

total_payment_qty : MO

separate_bill_ind : BL

0..*

1
perta ins_to

0..* has

1

0..1

0..1

is_the_prior_account_for

0..1

has_as_a_prior_account

0..1

0..*

0 ..*

has_paym ent_guaranteed_by0..*

provides_payment_guarantee_for

0..*

0 ..*

1belongs_to

0..*

has 1

Act

id : SET<II>
mood_cd : CS

service_cd : CD

txt : ED

status_cd : SET<CS>

ac tivity_time : GTS

critical_time : GTS
method_cd : SET<CV>

body_s ite_cd : SET<CD>

interpretat ion_cd : SET<CS>

confident iality_cd : SET<CV>

max_repeat_nmr : IVL<INT>

interrupt ible_ind : BL
subst itut ion_cd : CV

priority_cd : SET<CV>

orderable_ind : BL

availability_dttm : TS

0..* 1

has_source

0..*

is_source_for

1

0..*
1

has_target

0..*
is_target_for 1

1
0..*

is_collected_by

1

col lects

0..*

0..*

0 ..1

is_charged_to

0..*

has_charges_for

0..1

Participation

type_cd : CS

tmr : IVL<TS>
note_tex t : ED

signature_cd : CV

func tion_cd : CD

awareness_cd : CV

0..*

1

for0..*

has
1

Role_role_relationship

type_cd : CS

effec tive_tmr : IVL<TS>

id : SET<II>

status_cd : SET<CS>

responsibility_cd : CS
1..1

0..*

is_root_for

1..1

is_leaf_of

0..*

Transportation

Encounter_facil ity_association

accommodation_cd : CV

effect ive_tmr : IVL<TS>

status_cd : SET<CS>

trans fer_reason_cd : CV

1

0..*

is_si te_for

1

is_si ted_at

0..*

Person_Language

0..*

1

speci fies_abi l i ty_ in 0..*

is_speci fied_by

1

Person_name

effective_tmr : IVL<TS>

nm : PN

type_cd : CV

Patient_appointment_request

Patient_slot

Financial_transaction

alternate_desc : ED

desc : ED

extended_qty : MO

fee_schedule_cd : CE

insurance_qty : MO

post ing_dttm : TS
qty : MO

transaction_batch_id : II

t ransaction_cd : CE

transaction_dttm : TS

transaction_id : II

t ransaction_type_cd : CE
unit_qty : MO

unit_cost_qty : MO

0..1

0..*

categorizes

0..1

is_categoriz ed_by0..*
0..*

1

is_associated_wi th 0..*

has
1

0..*

1

perta ins_to

0..*

is_associated_wi th

1

Healthcare_benefit_coverage_item

service_category_cd : CV

service_cd : CE

service_modifier_cd : CE
authorization_ind : BL

network_ind : BL

assertion_cd : CE

covered_part ies_cd : CE

qty : REAL

quant ity_qualifier_cd : CE
time_period_qualifier_cd : CE

range_low_qty : PQ

range_high_qty : PQ

range_units_cd : CV

assertion_effec tive_tmr : IVL<TS>

eligibility_cd : CE
policy_source_cd : CE

eligibility_source_cd : CE

copay_limit_ind : BL

0..1

0..*

has_as_components

0..1

is_a_c om ponent_of

0..*

1 ..*

0..*

is_covered_by

1..*

provides_coverage_for

0..*

Resource_slot

offset_qty : PQ

allocated_qty : REAL

resource_type_cd : CV
status_cd : SET<CS>

start_dttm : TS

Schedule

id : II
1

0..*

manages

1is_m anaged_by0..*

Patient_encounter

discharge_disposit ion_cd : CV
acuity_level_cd : CV

administrat ive_outcome_txt : ED

birth_encounter_ind : BL

cancellation_reason_cd : CV

c lassification_cd : CV

encounter_class ification_cd : CV
firs t_similar_illness_dttm : TS

follow_up_type_cd : CV

prac tice_setting_cd : CV

valuables_desc : ED

pre_admit_tes t_ind : BL

publicity_constraint_cd : CV
readmission_ind : BL

reason_cd : CV

source_cd : CV

referral_cd : CV

spec ial_courtesies_cd : CV

s tatus_cd : SET<CS>
triage_c lassification_cd : CV

urgency_cd : CV

valuables_location_desc : ED

0..*

1

is_uti l iz ed_during

0..*

uti l i zes

1

0..*

1

is_used_by
0..*

uses
1

Person

disability_cd : CE

ethnic_group_cd : CE

race_cd : CE

administrative_gender_cd : CE

ambulatory_status_cd : CV

birth_order_nbr : INT
education_level_cd : CV

living_arrangement_cd : CV

marital_s tatus_cd : CV

multiple_birth_ind : BL

organ_donor_ind : BL

religious_affiliation_cd : CV
student_cd : CV

status_cd : SET<CS>

credit_rating_cd : CV

addr : SET<AD>

telecom : SET<TEL>

special_accommodation_cd : SET<CV>

1

0..*

c om municates_in

1

is_comm unicated_by

0..*

1

0..*

has1

is_for

0..*

1

0..*

is_requested_by

1

requests 0..*

0..*

1

is_a_scheduleable_uni t_ for

0..*

is_scheduled_by

1

0..* 1
is_entered_by0..* enters 1

1

0..*

has

1

perta ins_to0..*

Resource_request

allowable_subst itut ions_cd : CV

durat ion_qty : PQ
start_dttm : TS

start_offset_qty : PQ

status_cd : SET<CS>

Service_scheduling_request

allowable_subst itut ions_cd : CV

duration_qty : PQ

start_dttm : TS

s tart_offset_qty : PQ
status_cd : SET<CS>

Appointment

appointment_durat ion_qty : PQ

notificat ion_reason_cd : CV
expec ted_service_desc : ED

scheduled_time : GTS

id : II

status_cd : SET<CS>

urgency_cd : CE

0..* 0..*is_reserved_by0..* reserves0..*

1..*
0..*

books

1..* is_booked_in0..*

0..1

0..*

is_parent_of

0..1

is_chi ld_of 0..*

0 ..1

0..1

is_scheduled_by

0..1

schedules

0..1

Entering_person

0..*

1

is_entered_by0..*

enters

1

1

0..1

takes_on_ro le_of

1

is_a_ro le_of

0..1

Scheduling_parameter

type_cd : CV

nm : ST

value : ANY

Appointment_request

reason_cd : CE

adminis trative_type_cd : CE

id : II

priority_cd : CV
change_reason_cd : CE

durat ion_qty : PQ

requested_t ime : GTS

appointment_rqst_category_cd : CE

status_cd : SET<CS>

dttm : TS

0..*1 is_requested_by 0..*requests1

1

0..*

requests1

is_requested_by 0..*

0..1

0..*

requests

0..1

is_requested_by0..*

0..1

0..*

enters0..1

is_entered_by
0..*

0..*

1

parameterizes 0..*

has_as_param eter

1

Query_response_message_type

Tabular_row_data

FileorBatch

control_id : II
name : ST

creat ion_dttm : TS

reference_control_id : II

sending_applicat ion_id : II

receiving_applicat ion_id : II

security : ST
file_batch_count : INT

file_comment : SET<ST>

Application_response_message_type

Query_ack

query_tag : II
query_s tatus_cd : CV

message_query_name : CV

hit_count_total : INT

hit_count_current : INT

hit_count_remaining : INT

1

0..*

has_response

1

is_response_wi th0..*

1

0..*

has_response

1

is_response_wi th
0..*

Response_control

quant ity_limited : PQ

response_modality : CV

Response_field

field_id : ST

data_type : CV
length : INT

TBL_response_control

0..*

1

returns_to 0..*

has 1

TBL_sort_control

name : ST

direc tion : CV

1

0..*

has1

is_for0..*

Element_sort_control

element_name : ST

direc tion : CV

Element_response_control

name : SET<CV>

0..*

1

is_for
0..*

has
1

Query_by_parameter

Query_spec_message_type

1

1

conta ins1

appl ies_to1

Non_Person_living_subject

taxonomic_classificat ion_cd : CE

breed_txt : ED

strain_txt : ED

coat_or_feather_coloring_txt : ED
euthanasia_ind : BL

produc tion_class_cd : CE

gender_status_cd : CE

MESSAGE CONTROL

Role

type_cd : CS

effective_tmr : IVL<TS>

addr : SET<AD>

telecom : SET<TEL>
0..*

0..1

has_as_participant0..*

participates_in

0..1

0..*

1

has_as_target
0..*

is_target_for1

1

0..*

is_source_of

1

has_as_source
0..*

Entity_relationship

relationship_cd : CS

Attention_line

key_word_txt : ST

value : ST

Batch

control_id : II

name : ST
creat ion_dttm : TS

reference_control_id : II

sending_application_id : II

receiving_application_id : II

security : ST

message_count : INT
batch_totals : SET<INT>

batch_comment : SET<ST>

0..1
0..*

conta ins

0..1

is_contained_by

0..*

TC_defined_message_type

Acknowledgement

type_cd : CV
note_tx t : ED

error_detail_cd : CV

expected_sequence_nbr : INT

1

0..1

occurs_wi th 1

has

0..1
1

0..1

has

1

occ urs_with0..1

Query

message_query_name : CV

query_tag : II
priority : CV

modify_indicator : CV

execut ion_and_delivery_t ime : TS
1

1

has

1

is_for
1

Message

sending_applicat ion_id : II

id : SET<II>

c reation_dttm : TS

interact ion_id : II

event_dttm : TS
version_id : ST

profile_id : SET<OID>

process ing_cd : CV

sequence_nbr : INT

reply_to_com : TEL

receiving_applicat ion_id : SET<II>

0..*1

c an_accom pany

0..*

can_include

1

0..1

0..* conta ins

0..1is_conta ined_by

0..*

0..1

1

occurs_wi th
0..1

has
1

1..*

1

acknowledges
1..*

has 1

0..1

1

occurs_wi th
0..1

has
1

0..1

1 occurs_wi th

0..1has

1

Entity

id : SET<II>

type_cd : CS

primary_nm : ST
determiner_cd : CS

primary_name_type_cd : CE

importance_s tatus_tx t : ED

1
0..*

p lays_a_role

1

is_played_by

0..*

0..*

1has_as_target

0..* is_target_for

1

1

0..*

is_source_of

1
has_as_source

0..*

0..*

1 ..*

has_recipient
0..*

shal l_receiv e

1..*

0..*

1..1

has_sender

0..*

sends

1..1

Query_by_selection

Selection_criteria

name : ST

relational_operator_cd : CV

value : ST

relational_conjunc tion_cd : CV

1

1..*

conta ins 1

appl ies_to 1..* 0..1

0..*

is_father_to
0..1

is_son_of

0..*

Preauthorization

authorized_encounters_qty : REAL

authorized_period_begin_tmr : IVL<TS>

id : II

issued_dttm : TS

reques ted_dttm : TS
res triction_desc : ED

status_cd : SET<CS>

status_change_dttm : TS

1

0..1

is_authorized_by
1

authorizes

0..1

Insurance_certification

appeal_reason_cd : CE

certification_durat ion_qty : PQ

effect ive_tmr : IVL<TS>

id : II

insurance_verification_dttm : TS
modificat ion_dttm : TS

non_concur_cd : CE

non_concur_effective_dttm : TS

penalty_qty : MO

report_of_eligibility_dttm : TS

report_of_eligibility_ind : BL

1

1..*

has_contact

1

is_contact_for 1..*

10..*

has_coverage_affi rm ed_by

1

affi rms_insuranc e_coverage_for

0..*

0 ..*

1

provides_val idation_for0..*

is_validated_by1

Insurer1

0..*

issues

1

is_issued_by

0..*

1

0..*

issues

1

is_ issued_by

0..*

Master_healthcare_benefit_product

assignment_of_benefits_ind : BL

benefit_product_desc : ED

id : II

benefit_product_nm : ST

benefit_product_type_cd : CE

benefits_coordinat ion_ind : BL
cob_priority_nbr : REAL

combine_baby_bill_ind : BL

effective_tmr : IVL<TS>

group_benefit_ind : BL

mail_c laim_party_cd : CE

release_information_cd : CE
s tatus_cd : SET<CS>

coverage_type_cd : CE

agreement_type_cd : CE

policy_category_cd : CE

access_protocol_desc : ED 0..*

0..1

is_chi ld_of

0..*

is_parent_of

0..1

1..1

0..*

is_the_purchaser_of 1..1

has_as_purchaser0..*

0 ..*

0 ..1

is_covered_by 0..*

c overs
0..1

0..*

1

is_a_instance_of

0..*

is_ instantiated_as1

0..*

0..*

insures
0..*

is_insured_by

0..*

1

0..*

offers

1

is_offered_by 0..*

Clinical_document_header

availability_s tatus_cd : CV

change_reason_cd : CV

completion_status_cd : CV

confident iality_status_cd : CV
content_presentat ion_cd : CV

document_c reation_dttm : TS

file_nm : ST

last_edit_dttm : TS

reporting_priority_cd : CE

results_report_dttm : TS
storage_status_cd : CV

transcription_dttm : TS

document_change_cd : CV

version_nbr : INT

version_dttm : TS

Clinical_document

1

1

is_part_of
1

has_parts
1

Individual_healthcare_practitioner_slot

Individual_healthcare_practitioner_pool

id : II

Individual_healthcare_practitioner_request

practit ioner_type_cd : CE

0..1

0..*

is_requested_by 0..1

requests 0..*

Certification_additional_opinion

effective_dttm : TS

s tatus_cd : SET<CS>

0..*

1

prov ides_opin ion_on
0..*

includes
1

Individual_healthcare_practitioner

fellowship_field_cd : CE

graduate_school_nm : ON

graduation_dttm : TS

board_certified_ind : BL

pract it ioner_type_cd : CE

1

0..*

is_scheduled_by
1

is_scheduleable_uni t_ for

0..*

1 ..*

0 ..*

belongs_to1..*

conta ins

0..*

1

0..*

is_requested_by1

requests 0..*

0..*

1

is_provided_by0..*

prov ides

1

Role-role relationships

entity

role

role-role-relation

finance service

messagescheduling
Health Level 7 - RIM

Reference Information Model

Figure 7.12: HL7 Reference Information Model Framework [150]

Container

capacty_qty : PQ

height_qty : PQ

diameter_qty : PQ

barrier_delta_qty : PQ

bottom_delta_qty : PQ

seperator_type_cd : CD

cap_type_cd : CD

Access

gauge_qty : PQ

entry_site_cd : CD

body_site_cd : CD

Device

slot_size_increment_qty : PQ

manufacturer_model_nm : ST

last_calibration_dttm : TS
1 is_scheduled_by1

1 is_requested_by1
1..* belongs_to1..*

Sample

body_site_cd : CE

category_cd : CV

content_category_cd : CV

description_txt : ED

Living_subject

birth_dttm : TS

deceased_dttm : TS

deceased_ind : BL

eye_color_cd : CE

qty : REAL

diet_category_cd : CS Material_relationship

type_cd : CS

inversion_ind : BL

effective_tmr : IVL<TS>

position_nbr : LIST<INT>

qty : PQ

Material

form_cd : CV

danger_cd : CE

desc : ED

qty : SET<PQ>

status_cd : SET<CS>

effective_tmr : IVL<TS>

handling_cd : CE

category_cd : CE

0..* 1

has_source

0..* is_source_for 1

0..* 1

has_target

0..*

is_target_for

1 Facility

mobility_ind : BL

addr : AD

desc : ED

licensed_bed_nbr : REAL

telecom : TEL

status_cd : SET<CS>

category_cd : CV

slot_size_increment_qty : PQ

1..*

belongs_to

1..*
1

is_requested_by

11

is_scheduled_by

1

Inpatient_encounter

length_of_stay_qty : PQ

Location

gps_txt : ST

Software_module

software_version_nm : ST

Logical_entity

logical_entity_type_cd : CS

definition : ED

1is_assigned 1

Language_ability

mode_cd : CV

proficiency_level_cd : CV

Manufactured_material

expiration_dttm : TS

lot_nbr : ST

Health_chart

status_cd : SET<CS>

Health_chart_deficiency

assessment_dttm : TS

desc : ED

level_cd : CV

type_cd : CV

1

0..*

has_an_assessment_of

1

is_assessed_against

0..*

Act_collection

name : ST

desc : ED

effective_tmr : IVL<TS>

Organization

org_nm : SET<ON>

standard_industry_class_cd : CE

addr : SET<AD>

telecom : SET<TEL>
1takes_on_role_of 1

1..1

establ ishes

1..1

1

has_parts

1

Encounter_facility_association

accommodation_cd : CV

effective_tmr : IVL<TS>

status_cd : SET<CS>

transfer_reason_cd : CV

1

0..*

is_site_for

1

is_sited_at

0..*

Person_Language

0..*

1

specifies_abi li ty_in 0..*

is_specified_by

1

Person_name

effective_tmr : IVL<TS>

nm : PN

type_cd : CV

0..1

categori zes

0..1

Patient_encounter

discharge_disposition_cd : CV

acuity_level_cd : CV

administrative_outcome_txt : ED

birth_encounter_ind : BL

cancellation_reason_cd : CV

classification_cd : CV

encounter_classification_cd : CV

first_similar_illness_dttm : TS

follow_up_type_cd : CV

practice_setting_cd : CV

valuables_desc : ED

pre_admit_test_ind : BL

publicity_constraint_cd : CV

readmission_ind : BL

reason_cd : CV

source_cd : CV

referral_cd : CV

special_courtesies_cd : CV

status_cd : SET<CS>

triage_classification_cd : CV

urgency_cd : CV

valuables_location_desc : ED

11

0..*

1

is_used_by 0..*

uses
1

Person

disability_cd : CE

ethnic_group_cd : CE

race_cd : CE

administrative_gender_cd : CE

ambulatory_status_cd : CV

birth_order_nbr : INT

education_level_cd : CV

living_arrangement_cd : CV

marital_status_cd : CV

multiple_birth_ind : BL

organ_donor_ind : BL

religious_affiliation_cd : CV

student_cd : CV

status_cd : SET<CS>

credit_rating_cd : CV

addr : SET<AD>

telecom : SET<TEL>

special_accommodation_cd : SET<CV>

1

0..*

communicates_in

1

is_communicated_by

0..*

1

0..*

has1

is_for

0..*

1

is_requested_by

11

is_scheduled_by

1

1enters 1

1

has

1

0..1

is_scheduled_by

0..1

1

takes_on_role_of

1

Non_Person_living_subject

taxonomic_classification_cd : CE

breed_txt : ED

strain_txt : ED

coat_or_feather_coloring_txt : ED

euthanasia_ind : BL

production_class_cd : CE

gender_status_cd : CE

Entity_relationship

relationship_cd : CS

Entity

id : SET<II>

type_cd : CS

primary_nm : ST

determiner_cd : CS

primary_name_type_cd : CE

importance_status_txt : ED

1

plays_a_role

1

0..*

1has_as_target

0..* is_target_for

1

1

0..*

is_source_of

1
has_as_source

0..*

1..*1..*1..1

sends

1..1

1
is_authorized_by

1

0..*

is_insured_by

0..*

Clinical_document_header

availability_status_cd : CV

change_reason_cd : CV

completion_status_cd : CV

confidentiality_status_cd : CV

content_presentation_cd : CV

document_creation_dttm : TS

file_nm : ST

last_edit_dttm : TS

reporting_priority_cd : CE

results_report_dttm : TS

storage_status_cd : CV

transcription_dttm : TS

document_change_cd : CV

version_nbr : INT

version_dttm : TS

Clinical_document

1

1

is_part_of
1

has_parts
1

� Entity: Organisation, Living Subject, Material, Health Chart,

Location

� Living Subject: Person, Non Person

Figure 7.13: RIM Entities [150]

7.2 Design Reflections 227

If the RIM got implemented in the Java programming language, all of its classes would inherit

from the top-most super class java.lang.Object. For reasons of clearity, figure 7.14 omits

several intermediary classes and lets Living Subject inherit directly from java.lang.Object.

Address address;

void set_address(Address a) {

 this.address = a;

}

Address get_address() {

 return this.address;

}

Living Subject

Person

 birthdate: Calendar

 set_birthdate(d: Calendar): void

 get_birthdate(): Calendar

 address: Address

 set_address(a: Address): void

 get_address(): Address

java.lang.Object

Figure 7.14: Accessing a Person’s Attributes

Section 7.2.5 proposed to make the top-most model in a tree of models inheriting from each

other a Container. In the case of Java that would mean to add a container attribute such

as one of type HashMap, together with the necessary access methods set, get and remove,

to the java.lang.Object class (figure 7.15).

That way, every abstract model (OO class) would, by default, become a container able to

store a hierarchy of sub models (objects). This would be much closer to what section 7.1

worked out on the importance of the principle of Composition in human thinking, which

perceives its environment in form of discrete, but composed items. Every item in universe

can be seen as Compound of yet smaller items. The basis of every modelling effort must

therefore be a Container Structure.

This would also be a solution to the criticism of chapter 5, meaning that: the hierarchy as

concept is not inherent in the type system of current programming languages.

Additionally, access methods of classes inheriting from java.lang.Object (that is of all classes)

would become superfluous. Because every class is a sub model of java.lang.Object, every

class can use not only its container, but also the corresponding set, get, remove methods.

228 7 Knowledge Schema

java.lang.Object
 parts: HashMap

 set(n: String, o: Object): void

 get(n: String): Object

 remove(n: String): void

0..*

parts

Living Subject

Person

 static birthdate: String

 static address: String

void set_address(Address a) {

 this.address = a;

 get_manager().update(this);

}

void some_method() {

 ..

 part.set_address(a);

 get_manager().update(part);

}

Address a = (Address) get("address");

Address a = (Address) get(Person.address);

Figure 7.15: Access Method Elimination through Top-Level Container

On its top right-hand corner, figure 7.15 shows the program code that could be used to access

an Address as a Person’s sub model. In order to correctly identify the various attributes

of a person, each of them needs to carry a unique name. In the example of figure 7.15, the

names are hold as static attributes of the classes they conceptually belong to. But they

can as well be stored somewhere else – even in an external configuration file, better called

Knowledge Specification.

One objection to the elimination of access methods in sub models could be that then, neces-

sary updates cannot be initiated. Traditionally, such updates are often placed in the access

methods directly. Figure 7.15 shows how an update manager is called in the set address

method, after the address attribute has been changed. However, the same update call can

be made outside the access method. It would possibly have to be called at several places

then, but judging from this work’s author’s experience with frameworks, the number of up-

date calls won’t be too high and is usually well manageable. The questionableness of the

OO principle of Encapsulation in general was already mentioned in section 4.1.15. Finally,

there is actually no access method-related code that cannot be handled alternatively.

7.2 Design Reflections 229

7.2.8 Categorisation versus Composition

Since the beginnings of Object Oriented Programming (OOP), several of its paradigms were

reflected critically and found to cause problems. One of them is the Fragile Base Class

Problem explained in section 4.1.15.

party

organisation person

nurse consultant

staff_member patient

party_relation

Figure 7.16: Categorisation versus Composition of Parties [18, p. 12]

Further problems may occur through the misuse of inheritance, leading to bad design solu-

tions. A typical example is the modelling of demographic entities like Patient or Nurse as

subtypes of Person (figure 7.16), whilst actually, they are Party Relationships [18, p. 12],

[97].

As can be seen, inheritance can create more problems than are foreseeable. One way to

circumvent unwanted dependencies is to sort abstract models according to their placement

within a larger model surrounding them. Part models of a model may be grouped by their

level of Granularity. It should never be only Properties leading to the creation of a super

category.

A main reason for using inheritance is the reuse of functionality in form of methods. If

methods as logic models were kept externally of state models, inheritance as way to reuse

methods would not be necessary anymore (section 8).

230 7 Knowledge Schema

7.3 Knowledge Representation

Section 7.1 identified the abstraction principles of human thinking, before section 7.2 re-

flected on their impact on software design. The final considerations of this chapter now deal

with a possible architecture for knowledge representation (as first presented in [128]), which

applies the principles of human thinking.

7.3.1 Knowledge Ontology

The previous sections tried to demonstrate the importance of Composition for knowledge

modelling. One technique that was mentioned in this context are Ontologies. Section 4.6

introduced some of its numerous definitions. Section 7.2.5 demonstrated how the principle

of Hierarchy may be applied to obtain an Ontology. The layers forming an ontology were

called Ontological Level.

Basically, an ontology represents a systematic description of complex domain contexts. This

work uses its own adapted definition, and considers an ontology to be a strict hierarchy of

abstract models, organised in levels of growing granularity, that are solely unidirectionally

related.

Terminologies as described in section 4.6.5 may be used to specify the basic elements of an

ontology. Every term may be represented by an own abstract model (concept) containing a

number of strings, one for each terminology system. Further strings may stand for language

translations, which has importance for Internationalisation.

The following examples may seem simple, but want to strengthen the hierarchical thinking

of the reader, under consideration of the granularity of models.

Biological Systems

One example showing the hierarchical structuring of biological systems is mentioned in [285].

Its models are listed in decreasing granularity, in table 7.3.

It is important not to mix ontological layers with parallel layers. In Geology or Biology, the

latter (also called Stratum) may be layers of material arranged one on top of another (such

as a layer of tissue or cells in an organism) [320]. However, these are not composed of each

7.3 Knowledge Representation 231

Biological System

Ecosystem

Biocoenosis (Living Community)

Multiple Cell Organism

Single Cell Organism (Protozoa)

Organelle (Mitochondrie, Chloroplast)

Supra Molecular Complex (Ribosome, Chromosome, Membrane)

Small Molecule

Table 7.3: Hierarchical Structuring of Biological Systems

other. Ontological layers, on the other hand, have a different level of granularity, each so

that higher-level abstractions are composed of lower-level abstractions.

Logical Book

The logical structure of a Book shall serve as second example. A Chapter may consist of

Paragraphs. Yet it may become necessary to first subdivide Chapter into Sections which

then consist of Paragraphs, as shown in table 7.4.

All ontologies can get extended up- or downwards, by adding further levels, at any later

point in design time. But they can as well get extended by inserting Intermediate Layers

between two already existing ones. However, additional levels should only get introduced if

there really is a need for them.

Model Category

Library

Book

Part

Chapter

Section

Paragraph

Sentence

Word

Character

Table 7.4: Logical Book

In contrast to the division of a logical book, a physical book may be structured completely

232 7 Knowledge Schema

differently, for example into Binding, Cover and Pages. Of course, the contents of an

ontology heavily depends on the intended area of application (knowledge domain) of the

software to be created.

Interdisciplinary Science

A third, certainly very subjective example tries to sort a number of known Sciences into one

common system (table 7.5). Arts, Linguistics, Mathematics and Informatics have an extra

status: They deal with already abstracted knowledge (paintings, music, language, numbers)

and can be used as utility by any of the other sciences.

Scientific Subject Example Model

Astronomy Celestial Body (Big Bang, Cosmos)

Biology Living Thing (Human, Animal, Plant, Virus)

Geography Dead Thing (Air, Fire, Stone, Crystal)

Chemistry Compounds (Water, DNA)

Physics Particles (Elementary Particle, Atom, Matter, Energy)

Philosophy / Religion Dialectic Dualism (Matter/Anti-Matter, +/-, 0/1)

Table 7.5: System of Sciences

The whole effort of finding new ways for representing knowledge, as done in this work, is an

inter-disciplinary undertaking itself, touching various fields of science. The world (nature)

needs to be understood in its basics so that humans are enabled to copy its concepts and

put them into artificial models – exactly what Cybernetics is all about.

Car Model

A Computer Aided Design (CAD)/ Computer Aided Manufacturing (CAM) system of a car

manufacturer will have a Car model like the one shown in table 7.6.

Model Category

Car

Body, Chassis, Engine, Transmission

Door, Axle, Wheel, Cylinder

Window, Suspension, Plunger

Table 7.6: Car Model

7.3 Knowledge Representation 233

The ontology contains multiple categories of models which are composed of each other. An

Engine consists of a Cylinder which consists of a Plunger and so on. That is why people

speak of different Layers or Levels of abstract models. An Axle belongs to one level and a

Chassis belongs to another, higher level. In a good ontology, the relations between models

are always unidirectional, that is a chassis can link to axles but not the other way.

Macrocosm and Microcosm

Table 7.7 lists Astronomical Particles [85, 9]. It ends with the Universe and an undefinable

Macrocosm.

Category Example Model

Macrocosm (Infinity)

Universe Our Universe with its Laws of Nature

Heap of Galaxies Local Group, Heap of Virgo

Galaxy Milky Way (our), Andromeda, Magellan’s Clouds

Planetary (Solar) System Sol (Sun), 51 Pegasi

Star/ Planet Beta Pictoris, Mercury, Venus, Earth, Mars

Table 7.7: Astronomical Particles

When trying to abstract things (in software), there has to be some limit, a kind of Top

Level Model. It represents the Concept to be described. For a medical information system,

one such top level model will be the Electronic Health Record (EHR); for an insurance

application, it will be the Electronic Insurance Record (EIR); and so on.

Models do not only have to be limited upwards; the same holds true for modelling towards

Microcosm. Table 7.8 organises particles, as used by natural sciences, into several categories.

Category Example Model

Physical Compound Air, Water, Fire, Ground

Chemical Compound/ Molecule H2, O2, O3, H2O

Crystal C (Diamond)

Atom (Chemical Element) H, He, O

Elementary Particle Quark, Lepton (Electron, Neutrino)

Urelement (Primary Particle)

Microcosm (Infinity)

Table 7.8: Physical Particles

234 7 Knowledge Schema

Although the real world seems to be built like that (infinite, nobody knowing what comes

beneath the Quark particles) – in software modelling it makes no sense (and is actually

impossible) to neverendingly introduce lower and lower levels, towards Microcosm. On some

point, the hierarchy has to be stopped, to be able to abstract it in software. The later

chapter 8 gives an overview of common knowledge primitives.

7.3.2 Schema

A theoretical Model is an abstract clip of the real world, and exists in the human mind.

Another common word for Model is Concept. It is the subsumption of Item, Category and

Compound, resulting from three activities of abstraction: Discrimination, Categorisation

and Composition (section 7.1.3). As such, each model knows about the parts it consists of.

itemcategory

1..1

compound

model

0..* 0..*

details

abstraction

1..1

name

relations

unidirectional

item

+ category

+ compoundschema
= schema

Figure 7.17: Knowledge Schema with Meta Information about Parts

Yet what does this knowledge of a compound model (whole) about its parts imply? Software

developers call knowledge about something Meta Information. Figure 7.17 shows the four

essential kinds of meta information in a whole-part relation. Software developers might want

to call the illustration of these relations a Schema or Meta Model.

An obvious way is to give each part a unique Name for identification. The concept of a

human body, for example, would have parts like heart, brain, left arm and so on.

7.3 Knowledge Representation 235

Secondly, a compound needs to know about the Model of each part since a part may itself

be seen as compound that needs to know about its parts. Although all real world items

can be modelled as compound, it does not make sense to do so in the virtual world of

the human mind. As mentioned before, models have to be limited in their information

contents, towards microcosm as well as towards macrocosm, in order to be comprehensible

by the human mind. It is therefore necessary to introduce primitive models like a word

or a number (compare Quality and Quantity, section 7.1.7), representing the final form of

abstraction in a compound.

The distinction of the several kinds of models, in other words the kind of Abstraction (com-

pound, term, number etc.) of a model is the third kind of information a compound needs to

know about its parts. It is comparable to a Type in classical system programming languages

(section 4.1.7).

All further kinds of meta information are summed up by a fourth relation which is called

Details in this work. Just like the Model, it is a dynamically extensible structure. It will be

explained in the following section.

The suggested knowledge model uses a simple Tree structure, capable of referencing parts

of arbitrary type. It does not follow the Composite software pattern (section 4.2.2), because

the meta information whether a part model is a compound (composite) or not (leaf) does not

belong into the model structure. Section 7.2.8 explained this design mistake on the example

of Party types. It is not good to fix some model as leave, at design time. Who knows if at

runtime (during program execution), that model would not have to have any parts? As an

aside: A similar design (simple tree structure) is used by the Java Swing framework [112],

for example. Its tree node class DefaultMutableTreeNode represents a Tree Node and Tree

Container, at the same time.

7.3.3 Double Hierarchy

Finally, what makes up the character of a model (in the understanding of the human mind)

is a combination of two hierarchies: the Parts it consists of, together with Meta Information

about it.

Most properties of a molecule in Chemistry, for example, are determined by the number and

arrangement of its atoms. Hydrogen (H2) becomes Water (H2O) (with a totally different

character) when just one Oxygen (O) atom is added per hydrogen molecule. The Wikipedia

236 7 Knowledge Schema

Encyclopedia [60] cites and writes about Richard Levins and Richard Lewontin who, in their

book The Dialectical Biologist [194], sketch a dialectical approach to biology:

They focus on the (dialectical) relationship between the Whole (or Totality)

and the Parts: Part makes Whole, and Whole makes Part [194, p. 272]. That

is, a biological system of some kind consists of a collection of heterogeneous

parts. All of these contribute to the character of the whole, as in reductionist

thinking. On the other hand, the whole has an existence independent of the

parts and feeds back to affect and determine the nature of the parts. This

back-and-forth (dialectic) of causation implies a dynamic process. . . . Further,

each species is part of the Environment of all of the others.

The kinds of meta information discussed in the previous sections were also called Dimensions

or Conceptual Interaction between a Whole and its Parts. They may represent very different

properties and each of them may be constrained to certain values- or areas of validity.

buttonpanel
part 0..*

size

minimum

property

constraint

0..*

0..*

properties:

position, size, colour, order,

weight

constraints:

minimum, maximum, choice

meta information

Figure 7.18: Double Hierarchy of Parts and Meta Information

Figure 7.18 illustrates the Double Hierarchy here spoken of. A graphical panel was chosen

as example model. It may consist of smaller parts, among them being a number of buttons.

Altogether, they form the Part Hierarchy. On the other hand, there are properties like

the size, position or colour of the buttons, which are neither part of the panel, nor of

the buttons themselves; they are information about the buttons and form an own Meta

7.3 Knowledge Representation 237

Hierarchy. To the latter do also belong constraints like the minimum size of a button

or a possible choice of colours for it. Constraints can be treated like meta information

about properties. Once again: Properties are information about a Part ; Constraints are

information about a Property.

7.3.4 Modelling Example

Another example shall be given to substantiate the need to distinguish between the several

kinds of information. How would one describe a Horse, unbiassed as a child, by doing some

brainstorming? Figure 7.19 shows a number of terms commonly used to create a model of a

horse. Most importantly, there are structural observations describing the horse as concept

consisting of parts like Head, Legs or Hoofs. Secondly, there are properties like the horse’s

Colour, Shape or Size. Thirdly, there are terms describing a horse’s actions like its Movement

or Eating, that change a horse’s position and/ or state. Finally, there are a number of terms

like Hay or Saddle associating concepts related to the horse.

Figure 7.19: Concept of a Horse with Structure, Meta Properties and Logic

One might suggest to model properties like the position, size or colour of a horse’s leg

as Part of that leg. In fact, this is how classical programming approaches its solutions.

Structured- and Procedural Programming (SPP) (section 4.1.6), for example, would probably

use a structure called struct or record representing the leg and a field standing for the leg’s

238 7 Knowledge Schema

colour. Similarly, Object Oriented Programming (OOP) (section 4.1.15) would use a class

representing the leg and an attribute standing for the leg’s colour, which, in Java source

code, would look as follows:

public class Leg {

private String knee;

private String hoof;

private String colour;

}

However, when following the modelling principles of human thinking (section 7.1), this is

not correct! It is true that in everyday language, one tends to say A horse leg has a colour.

Unfortunately, this leads to the wrong assumption that a leg were made of a colour. But

this is not the case. A leg does not consist of a colour in the hierarchical meaning of a whole

consisting of parts. The colour is rather property information about the leg. It seems there

is no correct expression in natural (English) language stating the property of something.

The IS-A verbalisation is used to express that the leg belongs to a special category of items,

for example: A leg is a body element. The HAS-A formulation is used to express that a leg

as whole consists of smaller parts, for example: A leg has a knee and it has a hoof. But

which formulation expresses a property? Well, perhaps it would be best to say: A leg IS-OF

a colour.

It seems that scientists (including the author of this work) and adults in general have un-

learnt to think simple like children. Scientists sometimes tend to unnecessarily complicate

things that can be described quite easy. Other times, they simplify things which better be

distinguished. And looking back into the history of programming, one wonders who ever

had this idea of mixing structural elements, properties with meta information and logic al-

gorithms into just one structural entity as at least SPP (record, struct) and OOP (class)

do.

The CYBOP knowledge schema introduced before takes care of these things and distin-

guishes whole-part- from meta information. Actions (like the gallop of a horse) causing

some change in the model (horse) or its environment are called Logic in this work, since

they follow certain rules. Chapter 8 will deal with these.

7.3 Knowledge Representation 239

7.3.5 Container Unification

Section 4.1.15 demonstrated how container inheritance, due to polymorphism, may cause

unpredictable behaviour leading to falsified container contents. The sections of this chapter

introduced a knowledge schema which they claimed to be general. But that also means that

all kinds of containers must be representable by the suggested schema. But why are there

so many different kinds of containers? What actually is a container?

It is a concept expressing that some model contains some other model(s). Types of containers

that were introduced in section 4.1.15 are Collections (Array, Vector, Stack, Set, List), Maps

(Hash Map, Hash Table) and the Tree. They all are containers. What differs is just the meta

information they store about their elements. A list, for example, holds position information

about each of its elements. A map relates the name of an element to its model (1:1). A tree

links one model to many others (1:n).

But does the different meta information a container holds about its elements justify the exis-

tence of different container models? If a knowledge schema was general enough to represent

a container structure on one hand, and to express different kinds of meta information on

the other, it might be able to behave like any of the known container types.

The schema proposed in this work claims to be this kind of knowledge schema. It has

a container structure by default, and can thus hold many parts in a Tree-like manner. It

holds standard meta information about its parts: their Name, Model, kind of Abstraction and

further meta information called Details – and is therefore able to link the name of an element

to its model, in a Map-like manner. To the additional meta information (details) may belong

the Position of an element within its model, in a List-like manner. A Table structure can

be represented as well, by splitting it into a hierarchical (tree-like) representation, as known

from markup languages (section 4.1.12).

Chapter 9 will introduce a language capable of expressing all aspects of the knowledge

schema as proposed in this chapter.

7.3.6 Universal Memory Structure

To better explain the differences between traditional- and cybernetics-oriented design mod-

els, a further example shall be given. Figure 7.20 illustrates design-time structures in the

upper half, and runtime structures in the lower. Using Structured- and Procedural Program-

ming (SPP) or Object Oriented Programming (OOP), a developer would design a model as

240 7 Knowledge Schema

shown on the upper left-hand side in the figure. (The fact that OOP also offers inheritance

relations and OOP classes do own methods in addition to attributes, while SPP structures

do not, is of minor importance here.) At runtime, exactly that model would be applied to

structure instances and their relations accordingly, as shown on the lower left-hand side in

the figure.

runtime

structure

program

structure

traditional cybop

Figure 7.20: Universal Memory Structure

Not so in Cybernetics Oriented Programming (CYBOP). Knowledge templates as created

at design time do always have a hierarchical structure, as shown on the upper right-hand

side in the figure. They include Whole-Part- as well as Meta Hierarchies. At runtime, these

templates get cloned by creating models that follow the structure of the CYBOP Knowledge

Schema, as shown on the lower right-hand side in the figure. While SPP/ OOP rely on a

variety of different structures to store knowledge in memory, CYBOP uses one Universal

Memory Structure (knowledge schema) that, so to say, merges traditional structures like

different kinds of Containers, Class and Record/Struct. Even algorithmic structures (logic)

traditionally stored in a Procedure are covered by this knowledge schema. More on state

and logic in the following chapter.

The advantages are obvious. Data available in a unified structure are easier to process.

Dependencies of the knowledge schema are defined clearly and remain the same for all ap-

plications, so that domain/ application knowledge becomes independent from the underlying

system control software. Global data access and bidirectional dependencies are not neces-

7.3 Knowledge Representation 241

sary anymore, since every knowledge model can be accessed along well-defined paths within

the knowledge hierarchy. Byte code manipulation and similar tricks and workarounds might

finally belong to the past.

8 State and Logic

Time comes from a non-existent Future,

into a non-durable Presence,

and goes into a Past that has ceased to exist.

Aurelius Augustinus

state

& logic

The previous two chapters justified a split of static knowl-

edge from its dynamic processing in a system, as well as

the modelling of knowledge in a double-hierarchy. This

chapter, being the last of part II of this work, elaborates

on why it is important to distinguish two different kinds

of static models: State- and Logic Knowledge.

8.1 A Changing World

To start with, this section looks into nature and several sciences once more, to show how

both kinds of knowledge (states and logic) appear in them.

8.1.1 Change follows Rules

What makes our world so interesting is not (only) its static structure, but its permanent

Change. Already the ancient Greeks realised that Motion (Flux/ Activity/ Change) is

central to existence and reality [123]. Change happens according to Rules following a Logic.

John F. Sowa [294, p. 132] cites Immanuel Kant who writes about the omnipresence of rules:

244 8 State and Logic

Everything in nature, in the inanimate as well as the animate world, happens

according to Rules, although we do not always know these rules. Water falls

according to the laws of gravity, and the locomotion of animals also takes place

according to rules. The fish in the water, the bird in the air move according to

rules. All nature actually is nothing but a Nexus (inter-connection) of appear-

ances according to rules; and there is nothing at all without rules. When we

believe that we have come across an absence of rules, we can only say that the

rules are unknown to us.

Some people may believe that there are rule-less things in universe, for example kinds of

Randomness or Chaos (with the Entropy used as a measure of the disorder present in a

system [60]). Stephen Wolfram, however, demonstrated that everything in existence shows

at least one of the four following kinds of behaviour: Repetition, Nesting, Randomness,

Localised Structures (Universality) (section 7.1.1). And, he reproduced these using simple

rules encoded in abstract computer programs.

8.1.2 From Philosophy to Mathematics

Rules belong to a logic. Yet what is Logic and how best to describe it and the data it

processes?

Syllogism

Many descriptions exist for the term Logic. Webster’s Revised Unabridged Dictionary [212]

defines it as:

The science or art of exact reasoning, or of pure and formal thought, or of the

laws according to which the processes of pure thinking should be conducted;

the science of the formation and application of general notions; the science of

generalization, judgment, classification, reasoning, and systematic arrangement;

correct reasoning.

The WordNet Dictionary [320] calls it: A system of reasoning. A third definition given

by the Free On-line Dictionary of Computing (FOLDOC) [143] shall be mentioned: Logic

is a branch of philosophy and mathematics that deals with the formal principles, methods

and criteria of validity of inference, reasoning and knowledge. The Devil’s Dictionary [27]

8.1 A Changing World 245

means that the basic of logic were the Syllogism, consisting of three propositions: a major

and a minor Premise (assumption) and a Conclusion. An example:

- Major Premise: Sixty men can do a piece of work sixty times as quickly as one man.

- Minor Premise: One man can dig a post-hole in sixty seconds.

- Conclusion: Sixty men can dig a post-hole in one second.

The sense or nonsense (validity) of the results of reasoning is another issue. Syllogism means

in short: to conclude by deductive reasoning; to reckon all together; to bring at once before

the mind; to infer [212]. What is important to note here is that logic describes the laws

after which one state (major and minor premise) is related to another state (conclusion). It

associates two statements and defines the rules for deriving/ translating one from/ into the

other.

As in all sciences, there is unsolved problems to Logic, like the Aristotelian Problem of First

Principles. Kelley L. Ross [277] writes:

Logic is just the description of how (proposition) X implies (is a reason for)

(proposition) Y and (proposition) Z, or that Y and Z are logical consequences

of X. Logic can prove Y and Z on the basis of X, but it cannot prove X without

further reasons (premises) . . . If we continue to give reasons for reasons, from

Z to Y, to X, to . . . , this is called the Regress of Reasons. Aristotle’s second

point, then, was just that the regress of reasons cannot be an infinite regress. If

there is no end to our reasons for reasons, then nothing would ever be proven.

We would just get tired of giving reasons, with nothing established any more

securely than when we started. If there is to be no infinite regress, Aristotle

realized, there must be propositions that do not need, for whatever reason, to

be proven. Such propositions he called the first principles (archai, principii)

of demonstration. How we would know first principles to be true, how we can

verify them, if they cannot be proven is the Problem of First Principles.

This work does not attempt to further consider or even solve logical- philosophical problems

of that kind. Instead, it sticks with informatics which deals with processing given states

according to well-defined rules of logic and focuses on their mathematical side, namely

binary arithmetic and boolean logic, as described following.

246 8 State and Logic

Binary Arithmetic

One of the many great achievements of Gottfried Wilhelm Leibnitz (1646-1716) [224] was

his development of the mathematical Binary System of Arithmetic (1679) [277]. Unlike the

traditional number system that is based on the digits 0..9, the binary system uses only two

digits: 0 and 1. Yet it is possible to express any number as sequence of Bits (section 4.1.3),

called a Binary.

Many abstractions simplifying the real world are based on just two views (as investigated

by the philosophical field of Dialectic Dualism), for example:

- Plus Infinity & Minus Infinity (Mathematics)

- Positive & Negative (Physics)

- Matter & Antimatter (Physics)

- Force & Counterforce (Physics)

- Masculine & Feminine (Biology)

- Active Neuron & Passive Neuron (Neurology)

- Black & White (Psychology)

The binary system is now the basis of all digital technology. It enabled scientists to construct

simple electrical circuits and to combine them to greater, more complicated ones and, finally,

complex chips which are used in every computer.

Boolean Logic

Almost twohundred years after Leibnitz completed his binary arithmetic, George Boole

(1815-1864) took on those ideas and formed his Boolean Algebra, described in An Investi-

gation into the Laws of Thought, on which are founded the Mathematical Theories of Logic

and Probabilities (1854). The St. Andrew’s website [224] states:

Boole approached logic in a new way reducing it to a simple algebra, incorpo-

rating logic into mathematics. He pointed out the analogy between algebraic

symbols and those that represent logical forms. It began the algebra of logic

called Boolean algebra which now finds application in computer construction,

switching circuits etc.

8.1 A Changing World 247

The same site describes Boole’s theory as: a system of symbolic logic and: an algebra in

which the binary operations are chosen to model the union and intersection operations in

Set Theory. For any set A, the subsets of A form a Boolean algebra under the operations

of union, intersection and complement.

Boolean postulates and laws [24] are based on three operations: AND, OR and NOT. Every

Boolean algebra can be built up by combining simple Boolean algebra, with its elements 0

and 1. These definitions make it possible to express and translate complex knowledge. Sowa

[294] writes: Yet logic is all there is: every programming language, specification language

and requirements definition language can be defined in logic; and nothing less can meet the

requirements for a complete definition system.

8.1.3 System

Earth is a system, a biotope and its biological creatures, including human beings, are sys-

tems, our society, institutions, families and their individuals are systems, machines and

computers are systems – and software applications are systems. Actually, almost everything

in existence can be treated and simulated as system.

A rather general definition [60] describes a system as: an assemblage of inter-related elements

comprising a unified whole. Systems are in a steady exchange with their environment.

Information systems, for example, exchange data. Depending on their structure, relations

and contents, these may be called Knowledge. From the view of a system, the data are

called Input and Output. The output of one system can become the input for another.

A certain logic with special rules can be abstracted in form of a System. The system’s logic

causes its characteristic Behaviour, that is the way its Input gets manipulated to produce a

specific Output.

Deterministic- and Stochastic Behaviour

Systems can be distinguished by their behaviour, which can be deterministic or stochastic

(probabilistic). While the elements of the first work in a predictable way, probabilistic

systems are not fully transparent and their results are only likely, but never certain. Living

systems are entirely probabilistic, because firstly, not all of their elements are known and

secondly, they always consist of sub systems on different functional levels. [285]

248 8 State and Logic

Two areas dealing with the simulation of stochastic behaviour are Fuzzy Logic and Artifi-

cial Neural Networks (ANN). Most software systems though, need reliable (deterministic)

behaviour delivering predictable results. Deterministic systems are therefore in the focus of

the research done in this work.

Black Box

An Operation can be well treated as system: it contains rules of logic after which its input

gets transformed into its output. But not all systems are as easy as a simple operation;

many are composed of yet smaller systems. Biological systems, for example, are extremely

difficult to describe in their entirety, with a simple mathematical formula.

A system may be seen as a number of interacting Functional Elements. It is these elements

and their interactions which determine the specific properties and behaviour of a system.

However, for modelling the behaviour of a transmission system, its inner structure is not

important. Systems theory focusses on the time-dependent progression of input- and output

signals as well as their relation.

A common technique in systems engineering is to reduce complexity by hiding functionality

which is unimportant in the given context, inside a system. One then talks of a system as

Black Box since only its input, output and their relation, but not its inside, are considered

(figure 8.1). The black box provides an encapsulation towards the infinite microcosm, and

it knows nothing about its usage within a greater macrocosm (section 7.3.1).

The usual way to illustrate system elements and their relations is the Block Diagram. It is an

important instrument for system analysis. Many structures and processes can be described

in that manner. In software engineering, the Unified Modeling Language (UML) has become

the de-facto modelling standard instead.

Open- and Closed Loop

The scientific discipline of Automation- and Control Engineering knows two kinds of control

systems: Open Loop and Closed Loop (Feedback). German language better confines both by

defining the terms Steuerung (stearing) and Regelung (controlling). Figure 8.1 illustrates a

closed loop system, received by adding a feedback loop to the black box mentioned before.

8.1 A Changing World 249

system

input output

feedback

Figure 8.1: Closed Loop System with Feedback, modelled as Black Box

A device controlling the behaviour of a system is called a Controller. Automation engineering

uses electronic components such as Capacitor and Coil to build controllers providing linear

(proportional), differential or integral behaviour. In software engineering, things are simpler.

A computer program containing special mathematical equations can simulate and control a

system.

A software system’s internal signal processing loop reads signals one by one, from a signal

memory (section 6.3). While processing them, new signals may get created and placed in

the signal memory. This is how output results may be fed back to become a new input to

the software system.

Input/Output and Rules

In order to process data correctly, a system needs to know about their Structure. Software

systems work with data belonging to some knowledge model. Chapter 7 demonstrated how

knowledge can be modelled. Many applications keep their knowledge in special data files.

Others, such as Enterprise Resource Planning (ERP) systems, retrieve their data from a

database. Even systems claiming to do nothing than pure data processing, possibly using

one operation only, rely on simple knowledge models, for at least their Input/Output (i/o)

data.

250 8 State and Logic

Living systems rely on constantly exchanging information, energy, nutrients and excretion

products with their environment; they are never in a stationary, but always in a Steady

State. A biological cell, for example, has inputs and outputs and reacts in a certain manner

which, after [285], is best modelled with a Converter containing Rules, and treated as black

box. The cell’s characteristic behaviour results from the way it relates inputs to outputs.

system

input output

feedback

state knowledge

input / output models

domain models

logic knowledge

formulas, rules

business logic, workflow

manipulate

Figure 8.2: Logic translates between Input-, Domain- and Output States

Whilst figure 8.1 illustrated the i/o flow of a system from an outside view, figure 8.2 also

considers the state- and logic knowledge situated inside a system. The arrow indicating the

information flow is directed from Logic- towards State models, because the former manipu-

late the latter.

8.1.4 Self Awareness

One of the particular characteristics of human beings is their ability for Self Awareness. It

contrasts the human- with an animal mind because it permits humans not only to understand

what is going on in their environment, but also themselves and their being in this world.

In other words, the Mind knows about itself and about its existence in form of the human

organ called Brain, as its physical carrier and as the place of thinking.

Of course, the mind also knows about further organs and body parts. Some of the concepts

stored in it contain the characteristics of a human being. This knowledge of the structure

8.1 A Changing World 251

of the human body is necessary for the mind to be able to steer it. While the functions for

living are passively controlled by the vegetative (unconscious) nerve system, sensoric and

motoric (input/ output) organs need to be controlled actively, by the animalic (conscious)

nerve system.

A system also needs to know about its own abilities, in order to be able to communicate.

It has to have a concept of its communication organs/ devices, spoken languages etc. This

counts for a human- as for a computer system. The Agent systems used in Agent Ori-

ented Programming (AGOP) (section 4.3.7) know about their Capabilities, which are stored

together with other knowledge as their Mental State.

Human Body

Figure 8.3 shows parts of the animalic nerve system of a human being. Sensoric organs are

used for information input; motoric organs for information output.

input output

skin

ear

eye larynx

tongue

extremity

nose

Figure 8.3: Human Body with Sensoric and Motoric Organs

The five (seven) human senses were already shown in table 7.1. They are able to receive

signals which are transported by different mediums. The transport mechanisms rely on

various physical and chemical Effects, as shown in table 8.1. Each sense is represented by

an Organ. The optic cells of the retina of an Eye bundle light stimuli which the optic nerve

252 8 State and Logic

forwards as electrical signal to the brain. The inner Ear transforms oscillation frequencies

of sound-waves into electrical signals to send on to the brain. And so forth.

Effect Science Sense

Oscillation, Wave Physics, Mechanics Seeing, Hearing

Density, Temperature Physics, Mechanics, Thermodynamics Tactile

Aroma Chemistry Smelling, Tasting

Table 8.1: Effects as Basis of Sensing

While the Reception of information is based on Nerve Cells, it is Muscle Cells which are

responsible for information Sending. Humans communicate for example through visual

Gestures using their Extremities or through acoustical Talking using their Larynx/ Vocal

Chords. The latter, too, is based on muscle activity.

Computer Hardware

Gilbert Carl Herschberger II writes [132]: A computer is a grossly oversimplified model of a

human being. Humans can learn more about themselves by working with this model. And,

they might learn more about what makes a good model by looking at themselves. To the

many analogies a computer has with a human being belong its input/ output (i/o) devices

(figure 8.4), many of which have an equivalent organ in the human body:

- Eye: Camera, Scanner

- Ear : Microphone

- Nose, Tongue: Sensors

- Skin: Keyboard, Mouse, Joystick

- Larynx : Loudspeaker

- Extremity: Monitor, Printer, Braille Panel, Arm, Wheel

The difference to Robotics is that a robot has additional devices. Various Sensors are used

for information input; many moveable parts like Arms or Wheels take motoric action and

can be compared to the extremities of the human body. Table 8.5 gives an impression of

how technical and biological environments can be compared.

To sum up: Among the abstract knowledge models stored in a system are some that describe

the structure and capabilities of the system itself.

8.1 A Changing World 253

input output

mouse

scanner

camera loudspeaker

keyboard

monitor

sensor

braille panel

printer

Figure 8.4: Computer Hardware with Input- and Output Devices

Ontological Level Technical System Biological Equivalent

Network Internet, Wide Area Network (WAN) Society, Biotope

Family Local Area Network (LAN) Family

System Computer Organism

Block Component Organ

Figure 8.5: Ontology comparing Technical- and Biological Environment

8.1.5 Communication

As described in the previous sections, humans have sensoric and motoric organs responsible

for information input and output. In between input and output, the information is processed

by the brain that contains a specific abstract model of the surrounding real world. The

human brain consists of several regions (section 6.1.2), each being responsible for a special

task, such as the optical region for seeing or the cerebral cortex for actual information

processing which possibly leads to awareness. Depending on which medium, organ and

language is used, systems may communicate across different channels.

Transient

Valentin Turchin [317] writes:

254 8 State and Logic

Sensations are produced by our sense organs. Perceptions are formed and used

within the brain. Conceptions are created by ourselves while we create new,

linguistic, models of the world. The triad: Sensation, Perception, Conception

seems close in meaning to Kant’s usage of these terms. We leave it to the reader,

though, to judge on it.

The following example demonstrates a typical information processing procedure. Its se-

quential flow is illustrated in figure 8.6 which uses technical names, instead of biological

ones. These can be found again in the explaining text, enclosed in parentheses. The terms

Assembler and Mapper are converted and merged into the term Translator.

processortranslatorhandlerscreenmousesystem

wait

receive

handle

send

decode

process

encode

Figure 8.6: Signal Processing as UML Sequence Diagram

One human being (System) wants to send a message to another. It decides for an acoustical

message (Signal), formulates a sentence and talks. The other human being, waiting for

signals (wait), receives the message across its ear organ (Microphone, Keyboard, Mouse).

The message is then forwarded to the receiver’s brain (Handler), where a special region

responsible for acoustics (Translator) translates (decode) the data (Data Transfer Model)

contained in the message and sorts them into the human’s abstract model of the surrounding

real world (Domain Model). Processing of the message happens in the cerebral cortex of

the brain (Processor). If the addressed listener wants to send an answer message (Signal),

it may do so by triggering a muscle reaction. For this to happen, the motoric brain region

(Translator) needs to translate (encode) model data (Domain Model) into a special transfer

8.1 A Changing World 255

model (User Interface Model), for the answer. Finally, the answer message (Signal) will be

sent as muscle action (data display on Monitor).

If a communication partner does not, or only partly receives a message, the missing informa-

tion is lost, unless the sender repeats it once more. The reason is that the transport mediums

(light, air) do not steadily contain the information; the sent information is transient. There-

fore, the whole process described above can be called Transient Communication.

Persistent

One great advantage of human beings is to be able to help each other, to cooperate in order

to reach a common aim, to form a society which is to fill exactly these aims. Main tasks of a

State as one form of organisation of society are: Security, Education, Social Welfare. While

all of them depend upon Politics, there is an additional factor playing an increasingly im-

portant role: the Availability of Knowledge. Knowledge cannot only be exchanged between

current citizens of earth; fortunately, it can be forwarded over Generations.

For this to become possible, mankind had to make use of different mediums for external

storage, such as: Rock Painting, Stone Tablet, Papyrus Roll, Paper Book, Chemical Film,

Electronic File. It also had to invent technologies for the dissemination of knowledge: Monks’

copying by hand, Library, Printing, Radio and TV, Internet. The following example does

therefore not deal with direct inter-systems communication, but rather its indirect counter-

part – the interaction between a system and mediums in its environment. Of course, that

environment could be treated as system, too; but for reasons of simplification it is not here.

One human being (System) wants to send a message to another, which is not near the same

location, but at some remote place. The sender has to decide for a persistent message, and

to choose a non-transient medium to store that message. He takes a piece of paper, writes

down or paints some information and finally sends that paper as letter by (snail) mail. Paper

and letter act as Knowledge Carriers. The receiver may then perceive the message optically

and process it similarly to the transient communication explained in the previous section.

Because the information in this example is permanently available and reproducable from the

external medium, communication processes of that kind may be called Persistent Commu-

nication. In computing, persistent information can be stored in files on a Hard Disk Drive

(HDD), for example; data in Random Access Memory (RAM) or those sent over a network,

on the other hand, are transient.

256 8 State and Logic

The interpreter system introduced in chapter 10 is capable of using transient- as well as

persistent communication.

Models

Section 4.3.7 described a (software) Agent as social system communicating with other agents,

including human beings [294, p. 330]. Various communication process models were con-

tributed by the Social Sciences. Buesch [39] describes a Mathematical Communication

Model by Shannon & Weaver (figure 8.7) that shows very well the presence of two transla-

tors: Encoder and Decoder.

source message destination

channel

noise

encoder decoder

Figure 8.7: Mathematical Communication Model by Shannon & Weaver [286]

The Conversation Model of Osgood & Schramm (figure 8.8) extends the communication

model to a circular process of Question and Answer, of Sending and Receiving. It shows

more clearly, that every system, in order to communicate both ways, needs to own an

encoding as well as a decoding translator. The interpreter system introduced in chapter 10

contains both kinds of translators.

The Contents of Communication is described by the Lasswell Formula (figure 8.9). After it,

communication consists of the five elements: Sender (Who) and Receiver (Whom), Message

(What), Language (Channel) and Result (Effect). The first four of these will be considered

8.2 Translator Architecture 257

message

message

interpreter

encoder

decoder

interpreter

decoder

encoder

Figure 8.8: Conversation Model by Osgood & Schramm [240]

in the specification of the knowledge modelling language introduced in chapter 9. The effects

a communication has (fifth element) are not a prerequisite for that communication to happen

and thus not interesting in the context of its technical realisation, as investigated later in

this work.

8.2 Translator Architecture

Section 8.1 emphasised the different roles of state- and logic knowledge within systems and

communication processes. This section investigates how classical software system design

handles both kinds of knowledge models.

8.2.1 Interacting Systems

Chapter 3 introduced an example Information Technology (IT) environment (Physical Ar-

chitecture), containing many interacting systems: server and client, local and remote, human

and artificial (figure 8.10). In (object oriented) software design, special patterns are used

to architect a system such that it is able to communicate with other systems across var-

ious mechanisms (Logical Architecture). To these patterns count the Data Mapper, Data

258 8 State and Logic

who what channel whom effect

Figure 8.9: Contents of Communication (Lasswell Formula) [189]

Transfer Object (DTO) and Model View Controller (MVC) (section 4.2).

Although software development has become a lot easier in the last decades, it is still a big

effort that should not be underestimated. One thing that application developers have to

care about much of their time is the Conversion between various kinds of (communication)

models that a system has:

- Frontend (Communication with Human User)

- Backend (Communication with Data Source)

- Remote (Communication with Server)

- Domain (Communication with own Knowledge)

The different mechanisms and patterns that have to be considered for such model conversion

often need to be implemented repeatedly, for each new application. Some trials to unify all

backend communication in a common Persistence Layer exist [5], but are remote- and

frontend communication seldom considered in a comparable way. Obviously, no current

effort treats the frontend as just another communication model that has to be sent to the

human user as just another system.

The following sections will first reconsider three common communication patterns, before

embedding them into the classical model of logical system layers (section 4.2.1). After

8.2 Translator Architecture 259

remote

server

corba

soap

mouse

guihuman

user

database

server

jdbc

application

server

model view

controller

data transfer

object

data

mapper

Figure 8.10: IT Environment with Server using Communication Patterns

that, a simplification is suggested which finally leads to a new Translator Architecture (first

introduced in [127]).

8.2.2 Basic Patterns

Of the patterns described in section 4.2, some are of particular interest for communica-

tion. They are explained in Martin Fowler’s pattern collection called Enterprise Application

Architecture (EAA) [101], and reinvestigated for commonalities here.

Data Mapper Reflection

The most important idea of the Data Mapper pattern is to abolish the interdependency

between domain model and data source (persistence medium). All information about where

a data source like a File or Database (DB) is located, how to talk to it (File Stream, JDBC

with SQL etc.) and how to map Domain- to Entity Relationship Model (ERM) data is

moved away from the domain, into the data mapper layer.

This separation contributes to a clear architecture; it is not enough, though. The data

mapper layer often concentrates not only Mapping-, but also Communication functionality.

260 8 State and Logic

Database Management Systems (DBMS) such as PostgreSQL [122, 264, 265] or MySQL

[214] are often treated different than normal servers. Frequently, they are assigned a logical

Data Source layer (figure 4.1). But in fact, DBMS are Systems, as their name says, and as

such need to be addressed using special communication mechanisms (like JDBC or ODBC).

It therefore seems useful to extract all communication functionality from the data mapper,

and put it directly into the system control layer. Chapter 6 explained why it is favourable

to have application knowledge separated from system control mechanisms. While persis-

tence/ communication mechanisms as such do not contain any domain knowledge, mapper

(translator) modules do. The remaining data mapper layer would hence contain application-

related logic knowledge, for translating data from the domain model to the corresponding

persistence model and vice-versa.

The Cybernetics Oriented Interpreter (CYBOI) that will be introduced in chapter 10 is a

system able to handle local- as well as remote communication mechanisms. Applications

written in the Cybernetics Oriented Language (CYBOL), introduced in chapter 9, will have

to deliver the necessary logic for model translation, but application developers are freed

from implementing the same low-level system communication functionality (like sockets)

again and again, leading to clearer code with greatly reduced size. CYBOL application

developers are offered a number of communication mechanisms to choose from.

Data Transfer Object Reflection

The Data Transfer Object (DTO) pattern proposes to bundle domain data before sending/

receiving them among systems. An Assembler packs/ unpacks needed domain data into/

from a flat data structure called DTO.

Comparing with the data mapper described before, the assembler’s task of translating be-

tween data models seems quite similar. Wouldn’t it be possible, hence, to use Translator

models (logic knowledge) similar to those suggested for persistence, also for inter-system

communication? Different types of translator models could be provided for different com-

munication protocols. Again, communication mechanisms would be put into the System

Control layer, and translator logic into application-related Knowledge models.

8.2 Translator Architecture 261

Model View Controller Reflection

After having had a closer look at two common software patterns for persistence and com-

munication, this section finally considers the so-called Frontend of an application, which

is often realised in form of a Graphical User Interface (GUI). Nowadays, the well-known

Model View Controller (MVC) pattern is used by a majority of standard applications. Its

principle is to have the Model holding domain data, the View accessing and displaying these

data and the Controller providing the workflow of the application by handling any signals

(events/ actions) appearing on the view.

Since the view serves as means of communication between a software system and its user

(Human Being as system), it is in fact just another kind of communication model that

should be assembled by a special Translator. Because there are many ways in which domain

data can be displayed, different types of user interfaces exist (textual, graphical, web, vocal,

Braille). Each of them has to have its very own translator that knows how to map data

both ways, from the Domain model to the User Interface (UI) model and vice-versa.

Signalling and related mechanisms, as well as hardware-driving functionality such as graphics

adapter access belong into System Control modules; UI translators, on the other hand, are

application-specific models containing Logic Knowledge.

8.2.3 Placement

Many state-of-the-art software systems consist of a layered architecture similar to the one

shown in figure 4.1. Yet how do the communication patterns explained before suit this

classical architecture? In the traditional model of a layered software system, a startable

process, best placed in the Controller, creates the whole application tree, to which belong

the Views (as user interface), several Models of the Domain (providing data to the views

and as facade to remote servers) and the Data Mapper (translating between domain- and

database model).

It is not difficult to figure out where the communication patterns of section 8.2.2 fit in here

(figure 8.11): The Model View Controller (Presentation Layer) determines the parts to

interact with a human user via the View ; the Data Mapper pattern with its inherent Entity

Relationship Model (ERM) encapsulates mechanisms to connect to a persistence medium

such as a Database (DB); the Data Transfer Object (DTO) and its corresponding assemblers,

finally, serve as means of communication with remote servers.

262 8 State and Logic

remote process

system

database system

user

domain model

controller

view

data mapper

entity relationship model

assembler

data transfer object

domain model

Figure 8.11: Communication Patterns placed in Layered Architecture

8.2.4 Simplification

For all three kinds of communication, there is a:

- System (Human User, Database, Remote Server)

- Model (View, ERM, DTO)

- Translator (Controller/ View Assembler, Data Mapper, DTO Assembler)

All models represent certain states; all translators contain logic for converting one state into

another; all systems host their own, specific pool of state- and logic knowledge. Realising

this, a much clearer view on software architectures can be retrieved (figure 8.12).

Existing communication patterns can be merged into this common architecture. Although

these patterns suggest their very own communication paradigms, the basic principles of

interaction, as investigated on the example of transient and persistent communication of

humans in section 8.1.5, remain the same:

An active System (concrete process) has a mental state represented by passive

Knowledge. In order to exchange information with another system, it translates

parts of its domain- into a special communication model which it sends to the

other system. This is done by accessing its hardware infrastructure with input/

8.2 Translator Architecture 263

remote process

system

database system

user

domain model

controller

view

data mapper

entity relationship model

assembler

data transfer object

domain model

controller

data mapper assembler

logic state

view

entity relationship model data transfer object

domain model

Figure 8.12: Simplified Layered Architecture with State-/ Logic Knowledge

output (i/o) abilities. The other system receives the communication model and

translates it back to its own domain model.

Because domain models differ between systems, each system needs its own translator models.

Only communication models need to be agreed upon between systems; they need to be

understood by both communication partners.

8.2.5 Communication Model

As section 8.1.5 pointed out, systems (alive or not) never communicate directly, but always

across the detour of an external (transient or persistent) Medium. This makes it necessary

to use special Communication Models, since nearly always, only parts of a complete Domain

Model want to be exchanged. The use of communication (transfer) models again, entails

the use of model Translators. Sowa [294] writes in his book Knowledge Representation:

In computer science, there is no end to the number of specialized notations. Be-

sides the hundreds of programming languages, there are diagrams for circuits,

flowcharts, parse trees, game trees, Petri nets, PERT charts, neural networks,

design languages, and novel notations that are invented whenever two program-

mers work out ideas at the blackboard. Musical notation . . . is an example of

264 8 State and Logic

a complex language that is both precise and human factored. As long as the

mapping rules are defined, all of these notations can be automatically translated

to or from logic.

gui

hxp

domain

tui wui

gui_translator wui_translator

hxp_translator

tui_translator

xdt_translator

xdt

cda_translator

cda

Figure 8.13: Different Kinds of Model Translators

Although he does not talk of Domain- and Communication Models, but of Notations, Sowa

obviously means the same: Any kind of abstract model can be translated into any other

kind, as long as the translation Rules are defined. Model Translators are able to map

domain model data to transfer model data. Depending on which communication style is

used, different translators with different rules need to be applied.

Figure 8.13 shows a number of possible model translators, for a: Textual User Interface

(TUI), Graphical User Interface (GUI) and Web User Interface (WUI) as well as for the

German standard file format for exchanging medical data called x Datenträger (xDT), the

Healthcare Xchange Protocol (HXP) and HL7’s exchange format called Clinical Document

Architecture (CDA). More on these standards in chapter 11.

Many application systems have exactly one domain model but transfer models of arbitrary

type should be addable anytime. Translators only know how to translate between the domain

model and a special transfer model, of course in both directions. Direct translation between

transfer models is an exception; it is possible but better done via the domain model.

8.3 Knowledge Abstraction and -Manipulation 265

The type of transfer model is independent from the communication mechanism used. The

usage of a Graphical User Interface (GUI) model, for example, is not necessarily limited to

human-computer interaction. It could very well be used for data transfer between remote

computers, as long as both systems know how to translate that model.

8.3 Knowledge Abstraction and -Manipulation

Having shown the existence of state- and logic knowledge, not only in software systems, and

having compared both with a classical layered software architecture, what is still missing is

an overview of fundamental abstractions of state- as well as logic knowledge, and a solution

showing how both can be manipulated, in a knowledge-based system.

8.3.1 Algorithm

For John F. Sowa [294], Knowledge Engineering (KE) is: the application of logic and on-

tology to the task of building computable models of some domain for some purpose. Section

7.3 showed how an Ontology can be applied to structure state knowledge of a domain, and

introduced a new Knowledge Schema. This section investigates the universality of that

knowledge schema, that is its applicability to State- as well as Logic models.

Not only input/ output (i/o) knowledge (states) can be structured hierarchically, using an

ontology, the operations of a system (logic) can be cascaded and nested as well. The resulting

logic models are Sequences of input-to-output mapping rules that can consist of yet finer-

grained models. The theory of computing uses the word Algorithm to label a sequence of

mapping rules. Banerjee [15] writes on this:

Each . . . mathematician had to precisely define the notion of an algorithm, and

each defined it in a different way. Godel defined algorithm as a Sequence of Rules

for forming complicated mathematical functions out of simple mathematical

functions, Church used a formalism called the Lambda Calculus, while Turing

used a mathematical object called the Turing Machine and defined an algorithm

to be any set of instructions for his simple machine. All these seemingly different

and independently contrived definitions turned out to be equivalent and they

form the basics of the modern theory of computing. No modern programming

266 8 State and Logic

language can achieve more, in principle, than the Turing machine or the lambda-

calculus.

Time plays an important role in data processing. It dictates the order in which steps of an

algorithm are executed and thereby ensures a correct sequence of actions. Every element

of an algorithm needs to be assigned an instant (position) in time, as meta information.

Although the runtime-processing of data, according to an algorithm, is dynamic, the models

of logic – just like i/o state models – are static (chapter 6).

8.3.2 Operations

In the end, all computer-implemented procedures go back to boolean operations and binary

arithmetic (section 8.1.2), processed by digital logic circuits (section 4.1.3). A Multiplication

can be expressed as sequence of additions. By representing the number to be subtracted in

its negative form (Two’s Complement [250]), a Subtraction can be mapped to an addition.

An Addition itself is performed by linking Bits of the summands logically, using an AND

operation. Fundamental operations for knowledge translation are:

- Boolean: and, or

- Comparison: equal, smaller, greater

- Arithmetic: add, subtract, multiply, divide

They all imply special rules after which one or more input operands (values) get transformed

into one or more output operands. Both kinds representing static State Models, input and

output can be placed as branches of one common knowledge tree. But also the rules as

static Logic Models can be added to this tree.

8.3.3 Primitives

All software is based on the final two states called one & zero, or on & off, or true & false,

or similarly. A Binary Digit (Bit) can take on the values zero or one; it represents the final

abstraction of any software model and can be easily mapped to hardware. A second unit,

the Byte, consists of eight Bits. One Word is made up of two Bytes, one Double Word of

four Bytes and so forth. Data in a File on a Harddisk Drive (HDD) partition or another

8.3 Knowledge Abstraction and -Manipulation 267

Primitivum Size [Byte]

Date, Time, Complex, Fraction, Term many

Double, Float, Vector, String 8, 12, 16 or more

Integer, Pointer, Word, Short, Byte, Character 1, 2, 4, 7, 8 or more

Bit, Boolean 0 or 1 Bit

Figure 8.14: State Primitives sorted after their Granularity

storage medium are saved in form of Bit sequences, just like data in Random Access Memory

(RAM). It is up to a program to interpret these data correctly, in the desired manner.

Many programming languages offer a number of basic types, also called Primitives, which

are combinations of different numbers of Bits. Table 8.14 shows some of them, together with

their possible memory usage. Besides the primitive types that are included in a programming

language, there are other forms of storing data. Section 7.1.6 said that not only a String,

but also an Image or a Sound can represent a Quality, that is a Term with special meaning.

The format of such data sequences is often defined as Multipurpose Internet Mail Extension

(MIME) type, for example:

- text: sgml, xml, html, rtf, tex, txt

- image: jpeg, png, gif, bmp

- audio: ogg, mp3, wav

- video: mpeg, qt, avi

- application: kword, sxw

8.3.4 Logic Manipulates State

Knowledge models of the form introduced in chapter 7 are stored as tree structure in Random

Access Memory (RAM). They are the dynamic result of instantiating static knowledge

templates (concepts), and hence changeable. Because knowledge models are passive, they

need to be managed by an active system, responsible for their creation and destruction, as

described in chapter 6.

As the previous sections of this chapter have shown, there are two kinds of knowledge: States

and Logic. While the former may be placed in a spatial dimension, the latter are processed

as sequence over time. Often, logic is labelled dynamic behaviour – but only the execution

of a rule of logic is dynamic, not the rule itself. The rule is static.

268 8 State and Logic

Rules of logic manipulate input/ output (i/o) states, or more concrete: they translate input-

into output states (section 8.1.3). What characterises a system is how it applies logic knowl-

edge in order to translate state knowledge. Yet how to imagine a knowledge model consisting

of state- as well as logic parts? The famous Model View Controller (MVC) pattern was in-

troduced in section 4.2.1 and reviewed once more in section 8.2.2. The Hierarchical MVC

(HMVC) of section 4.2.1 extended the MVC pattern towards a hierarchy of MVC Triads.

On that basis, section 7.2.4 demonstrated the omnipresence of hierarchies in a system.

knowledge

domain

partdomain

partdomain

knowledge

knowledge.view.partview

knowledge.domain.partdomain

logic partlogic

partlogic

knowledge view partview

partview

knowledge

Figure 8.15: Runtime Model Hierarchy with Logic manipulating States

Figure 8.15 shows the three parts: Domain (Model), View and Logic (Controller) of the

MVC pattern as independent branches of one common knowledge tree. Each of them rep-

resents a concept on its own. The logic model, however, is allowed to access and change the

view- and domain model; it is able to link different knowledge models, to connect discrete

concepts. But view- and domain model, representing states, are not allowed to access the

logic model. In other words: The dependencies between logic- and state models are unidi-

rectional. New state models such as textual- or graphical views could be added anytime. All

that would be needed to make a system work with new state models, is the corresponding

translation logic, given in form of logic models.

Further examples may be given. A rather easy one is the Addition of two numbers. The

corresponding knowledge model looks pretty similar to the one shown in figure 8.15, only

that there are three state models: summand 1, summand 2 and sum. The logic model is

8.3 Knowledge Abstraction and -Manipulation 269

called add. While being processed, the add operation reads both summands and writes their

sum to the equally named state model. More complex examples are the Data Mapper and

Data Transfer Object (DTO) patterns reflected upon in section 8.2. Just like the MVC

pattern, both want the same: translation for communication.

Overcoming the classical scheme of thinking in terms of Frontend, Backend, Domain and

Communication, a translator-based architecture treats them all similar, as passive data

models which can be converted into each other – as opposed to the traditional approach and

patterns that unnecessarily complicate their handling. Translators simplify architectures by

unifying the implementation and mapping of any kind of transfer model, thereby avoiding

redundant parts. Resulting systems are highly flexible, easily extensible and better main-

tainable, because the interdependency of domain knowledge, user interface, persistence layer

and (remote) communication layer is abolished.

The clear separation of states and logic into discrete, independent models avoids unwanted

dependencies as caused by the bundling of attributes and methods in Object Oriented Pro-

gramming (OOP) (section 4.1.15).

One major innovation of the kind of programming suggested in this work is that logic

knowledge itself gets manipulatable. A logic model (algorithm, workflow) cannot only access

and change state-, but also logic models, and even itself! Because models modified in

that manner can be made persistent in form of CYBOL knowledge templates (chapter 10),

and be reloaded the next time an application starts, this may be seen as a kind of Meta

Programming, which [60] defines as: the writing of programs that write or manipulate other

programs (or themselves) as their data.

8.3.5 Without Capsules?

Once again it has to be said that all this becomes possible only because all domain/ appli-

cation knowledge is stored together in one single tree structure which is hold and managed

by the Cybernetics Oriented Interpreter (CYBOI) (chapter 10). What was traditionally

criticised as Side Effect, is now a wanted effect. Low-level system procedures within CYBOI

forward just one pointer – the root of the knowledge tree, which they all may access and

manipulate. Data values do not get copied among procedures; they exist just once in the

knowledge tree and may be used by any procedure. Of course, this also means that any

application has access to the knowledge of any other application. Ways ensuring sufficient

security have to be found here (section 13.2).

270 8 State and Logic

Besides the Encapsulation of data through Procedures, there are other forms of encapsulating

data, such as the Class (section 4.1.15). One of its purposes was to preserve transient data

in memory, another to restrict access to certain data. In CYBOP, both tasks are taken

care of by CYBOI. It holds the singular knowledge tree and manages access to it, through

well-defined low-level procedures.

There are a number of advantages to this style of programming: An application developer

has no chance of accessing memory areas directly, which prevents memory leaks and wrong

pointers. Because all knowledge can be accessed through well-defined paths into the knowl-

edge tree only, arbitrary security mechanisms may be applied and switched as needed, at

runtime. Since all algorithms (logic knowledge) work with references to data in the knowl-

edge tree (Call by Reference), no more data values need to be copied locally (Call by Value),

which ensures efficient memory usage. Errors are not to be expected, because nonexisting

knowledge references are simply ignored by CYBOI.

Part III

Proof

9 Cybernetics Oriented Language

The Whole is more than the Sum of its Parts.

Aristotle

Chapter 7 introduced a new model for structuring knowledge, which chapter 8 separated

into state- and logic knowledge. What still has to be given though, is a Proof of Operability

for these concepts. The following sections will therefore define the Cybernetics Oriented

Language (CYBOL), which contains all new principles and ideas, as first mentioned in

[125].

9.1 Formality

Abstract models can be described in different ways, for example [250]:

- informally by natural language

- semi-formally by diagrams

- formally by a programming language

The use of a programming language eases model abstraction for human programmers. Spe-

cial tools exist that break down models given in form of programming language code into

their binary form, into sequences of 0 and 1. These sequences are called Machine Language

because they are understood by computers.

Classical programming languages have the linguistic means to express high-level Knowledge

as well as low-level System Control operations, such as those for input/ output (i/o), nec-

essary for communication. The use of such languages inevitably leads to a mess in program

274 9 Cybernetics Oriented Language

code because knowledge and system control are mixed up. Inflexible, overly complex sys-

tems with numerous interdependencies are the result. Part I of this work criticised some of

the weak points of traditional programming language concepts.

This work makes the necessary split: Knowledge gets separated from system control. Chap-

ter 6 already discussed this separation giving manifold examples, taken from several sciences.

The CYBOL language being described in the next sections is just another form of storing

knowledge. It can therefore also be called a Knowledge Modelling Language. Any other low-

level system control functionality belongs to the Cybernetics Oriented Interpreter (CYBOI),

which gets introduced in the later chapter 10.

9.2 Definition

When defining a new language, several linguistic aspects have to be considered. One way

to systematise Language Analysis as part of Linguistics is to stratify it [225] into the four

fields:

- Context: topic described by the language, relationships between discussants, channel

of communication

- Semantics: meaning of language symbols and character strings; includes what is

usually called Pragmatics (Use of language)

- Lexico-Grammar: syntactic organisation of words into utterances

- Phonology-Graphology: study of the sound system and its phonemes [320]; judging a

person’s character from his handwriting [212]

Many more (sub) fields like Orthography and also other systematics [75] exist that will

not be considered further in this document. Phonology and Graphology are not considered

either, and the Context of CYBOL is very clear: It is to become a language for knowledge

modelling. The remaining fields Syntax and Semantics are important for the definition of

CYBOL and will get their own sections following. Another point receiving attention is the

language Vocabulary (Terms) whose background in abstraction was discussed in sections

7.1.6 and 8.3.

The CYBOP knowledge schema (section 7.3) is based upon two kinds of hierarchies, one

representing Whole-Part relations and the other the Meta Information which a whole keeps

9.2 Definition 275

about its parts. The syntax and semantics of CYBOL as new language must be rich enough

to express abstract models using these kinds of hierarchies.

Yet before inventing a completely new language definition, it seems useful to make use

of existing technologies and solutions. An interesting candidate is the Extensible Markup

Language (XML), as introduced in section 4.1.12.

9.2.1 Syntax

Every language has a special Syntax, that is a Grammar with rules for combining terms and

symbols [143]. CYBOL could define its own syntax or use an already existing one, of another

language. Because of its popularity, clear text representation, flexibility, extensibility and

ease of use, XML was chosen to deliver the syntax for CYBOL.

To mention just two of the syntactical elements of XML, Tag and Attribute are considered

shortly here. Tags are special, arbitrary keywords that have to be defined by the system

working with an XML document. Attributes keep additional information about the contents

enclosed by two tags. Two examples:

<tag attribute="value">

contents

</tag>

<tag attribute1="value" attribute2="contents"/>

An XML document carries a name and can such represent a Discrete Item, as suggested by

the principles of human thinking (section 7.1). Being a Compound, it consists of parts –

and, it can link to other documents treated as its parts. That way, a whole hierarchy can

be formed. Tag attributes can keep additional information about the linked parts. Most

importantly, XML documents have a hierarchical structure based on tags, which may be

used to store meta information about a part.

Considering these properties of XML, it seems predestinated for formally representing ab-

stract models using the CYBOP concepts. CYBOL, finally, is XML plus a defined set of

tags, attributes and values, used to structure and link documents meaningfully.

276 9 Cybernetics Oriented Language

9.2.2 Vocabulary

The Vocabulary is what fills a language with life. It delivers the Terms and Symbols that

are combined after the rules of a syntax.

XML allows to define and exchange the whole vocabulary of a language. It offers two ways

in which a list of legal elements can be defined: The traditional Document Type Definition

(DTD) and the more modern XML Schema Definition (XSD). Besides the vocabulary,

DTD and XSD define the structure of an XML document and allow to typify, constrain and

validate items. In addition to DTD and XSD, the Extended Backus Naur Form (EBNF) of

CYBOL is given following.

The language definitions were not added as appendix to this work, because firstly, they are

not too long and secondly, an understanding of the CYBOL elements is necessary to be able

to grasp the constructs and examples given in later sections.

Document Type Definition

A DTD represents the type definition of an SGML or XML document. It consists of a

set of Markup Tags and their Interpretation [143]. DTDs can be declared inline, within

a document, or as an external reference [272]. Figure 9.1 shows the DTD of the CYBOL

language.

Following the pure hierarchical structure of the CYBOP knowledge schema (section 7.3),

it would actually suffice to use a DTD as simple as the one shown in figure 9.2. Since

the three elements part, property and constraint (compare figure 9.1) have the same list of

required attributes, they could be summarised under the name part, for example. Because

the structure of a CYBOL model is non-ambiguous, the meaning of its elements can be

guessed from their position within the model.

For the purpose of expressing knowledge in accordance with the schema suggested by CY-

BOP, an XML document does not need to have a root element. The document’s (file)

name clearly identifies a model. For reasons of XML conformity, however, an extra root

element called model was defined (figure 9.1). And for reasons of better readability and

programmability, the three kinds of embedded elements were given distinct names.

9.2 Definition 277

<!ELEMENT model (part*)>

<!ELEMENT part (property*)>

<!ELEMENT property (constraint*)>

<!ELEMENT constraint EMPTY>

<!ATTLIST part

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

<!ATTLIST property

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

<!ATTLIST constraint

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

Figure 9.1: Recommended CYBOL DTD

<!ELEMENT part (part*)>

<!ATTLIST part

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

Figure 9.2: Simplified CYBOL DTD

278 9 Cybernetics Oriented Language

XML Schema Definition

XML Schema is an XML-based alternative to DTD [272], and XSD is its definition language.

There is a lot of discussion going on about the sense or Myth of XML Schema [38], that this

document will not take part in. Figure 9.4 shows the XSD of the CYBOL language.

<?xml version="1.0"?>

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’ targetNamespace=’http://www.cybop.net’

xmlns=’http://www.cybop.net’ elementFormDefault=’qualified’>

<xs:element name=’part’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’part’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 9.3: Simplified CYBOL XSD

Again, a simplified version of that XSD could be created (figure 9.3). But for reasons

explained before, the recommended XSD is the one shown in figure 9.4.

Extended Backus Naur Form

The EBNF adds regular expression syntax to the Backus Naur Form (BNF) notatation

[13], in order to allow very compact specifications [184]. Figure 9.5 shows the EBNF of the

CYBOL language.

9.2 Definition 279

<?xml version="1.0"?>

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’ targetNamespace=’http://www.cybop.net’

xmlns=’http://www.cybop.net’ elementFormDefault=’qualified’>

<xs:element name=’model’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’part’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=’part’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’property’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

<xs:element name=’property’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’constraint’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

<xs:element name=’constraint’>

<xs:complexType>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 9.4: Recommended CYBOL XSD

280 9 Cybernetics Oriented Language

CYBOL = ’<model>’

{part}

’</model>’;

part = ’<part ’ attributes ’\>’ |

’<part ’ attributes ’>’

{property}

’</part>’;

property = ’<property ’ attributes ’\>’ |

’<property ’ attributes ’>’

{constraint}

’</property>’;

constraint = ’<constraint ’ attributes ’\>’;

attributes = name_attribute channel_attribute abstraction_attribute model_attribute

name_attribute = ’name="’ name ’"’;

channel_attribute = ’channel="’ channel ’"’;

abstraction_attribute = ’abstraction="’ abstraction ’"’;

model_attribute = ’model="’ model ’"’;

name = description_sign;

channel = description_sign;

abstraction = description_sign;

model = value_sign;

description_sign = { (letter | number) };

value_sign = { (letter | number | other_sign) };

letter = small_letter | big_letter;

small_letter = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ |

’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ |

’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ |

’v’ | ’w’ | ’x’ | ’y’ | ’z’;

big_letter = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ |

’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ |

’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ |

’V’ | ’W’ | ’X’ | ’Y’ | ’Z’;

other_sign = ’,’ | ’.’ | ’/’, ’+’, ’-’, ’*’;

number = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ |

’5’ | ’6’ | ’7’ | ’8’ | ’9’;

Figure 9.5: CYBOL in EBNF

9.2 Definition 281

9.2.3 Semantics

The meaning expressed by terms and sentences is their Semantics [71].

CYBOL files can be used to model either State- or Logic Knowledge (chapter 8). In both

cases, the same syntax (document structure) with identical vocabulary (XML tags and

-attributes) is applied. It is the attribute Values that make a difference in meaning.

The double hierarchy proposed by CYBOP’s knowledge schema (section 7.3) is put into

static CYBOL knowledge templates, by using XML Attributes for representing the whole-

part hierarchy, and XML Tags for representing the additional meta information that a whole

model keeps about its part models.

Attributes

Normally, an XML Attribute keeps meta information about the contents of an XML Tag.

In CYBOL, however, three attributes keep meta information about a fourth attribute. The

attributes, altogether, are:

- name

- channel

- abstraction

- model

The attribute of greatest interest is model. It contains a model either directly, or a path

to one. The channel attribute indicates whether the model attribute’s value is to be read

from:

- inline

- file

- ftp

- http

The abstraction attribute specifies how to interpret the model pointed to by the model

attribute’s value. A model may be given in formats like for example:

282 9 Cybernetics Oriented Language

- cybol (a state- or logic compound model encoded in CYBOL format)

- operation (a primitive logic model)

- string

- double

- integer

- boolean

The name attribute, finally, provides the referenced model with a unique identifier.

While the interpretation of the model attribute’s value depends on the channel- and abstrac-

tion attributes, the other three attributes (name, channel, abstraction) themselves always

get interpreted as character string.

Tags

There are many kinds of meta information besides the above-mentioned attributes, that

may be known about a model. These are given in special XML tags called property and

constraint. As defined in section 9.2.2, a CYBOL knowledge template may use four kinds

of XML tags:

- model

- part

- property

- constraint

The model tag appears just once. It is the root node which makes a CYBOL knowledge

template a valid XML document.

Of actual interest are the part tags. They identify the models that the whole model described

by the CYBOL knowledge template consists of.

A whole model may know a lot more about its part models, than is given by a part model’s

XML attributes. A spatial state model may know about the position and size of its parts,

in space. A temporal model (such as a workflow) may have to know about the position of

its parts in time, in order to be able to execute them in the correct order. Further, the

temporal model needs to know about the input/output (i/o) state models which are to be

9.2 Definition 283

manipulated by the corresponding logic operation (part model). The number of parts within

a whole (compound) model may be limited. And so on. These additional information are

provided by property tags whose number is conceptually unlimited.

Not only parts need additional meta information; properties may need such information,

too. The position or size as properties of a part may have to be constrained to certain

values, such as a minimum or maximum. The values of the colour property of a part model

may have to be chosen out of a pre-defined set called choice. Information of that kind are

stated in constraint tags.

Since the number of possible meta information implementable in CYBOL is already quite

large and steadily growing, as the development continues, this section cannot list them all.

At a future point in time, a more-or-less complete CYBOL specification document may be

found at the CYBOP project’s website [256].

9.2.4 Tag-Attribute Swapping

CYBOL swaps the meaning attributes and tags traditionally have in XML documents, where

tags represent elements that may be nested infinitely and attributes hold additional (meta)

information about a tag. Following an example of how CYBOL might have looked that way:

<model>

<part>

<name="title"/>

<channel="inline"/>

<abstraction="character"/>

<model="Res Medicinae"/>

</part>

<part layout="compass" position="north">

<name="menu_bar"/>

<channel="file"/>

<abstraction="cybol"/>

<model="gui/menu_bar.cybol"/>

</part>

</model>

The current final specification of CYBOL, on the contrary, uses attributes to define a nested

element (part) and tags to give properties (meta information) about such a nested element,

in the following way:

284 9 Cybernetics Oriented Language

<model>

<part name="title" channel="inline" abstraction="character" model="Res Medicinae"/>

<part name="menu_bar" channel="file" abstraction="cybol" model="gui/menu_bar.cybol">

<property name="layout" channel="inline" abstraction="character" model="compass"/>

<property name="position" channel="inline" abstraction="character" model="north"/>

</part>

</model>

This is because:

1. the number of attributes specifying a part in CYBOL is fixed, whereas the number

of tags specifying a property of a part is not, and the number of XML tags is easier

extensible than that of attributes;

2. that way it is also possible to specify a part without any properties in just one CYBOL

code line, while otherwise four tags would always have to be given;

3. not only a part may be nested (consist of smaller parts), but also a property may

be (for example a position consisting of three coordinates given as parts), which

necessitates the four standard attributes to be given for properties and constraints

as well.

9.3 Constructs

After having defined the CYBOL language in the previous section, the following exam-

ples can demonstrate how the language’s constructs may be used in practice. Attention is

also payed to how control structures of classical programming languages (compare section

4.1.6) may be implemented in CYBOL. Additionally, this section discusses how inheritance,

containers and software patterns were considered in the design of CYBOL.

9.3.1 State Examples

The creation of composed state models is quite straightforward and clear, as the following

CYBOL knowledge templates show.

9.3 Constructs 285

Model-Part Relation

The DocBook DTD [336] is one of many well-known specifications for structuring docu-

ments. The Linux Documentation Project [197] makes heavy use of it. DocBook is based

on numerous XML tags with defined meaning.

The following example shows how parts of a Text Document can be modelled differently,

with at most four tags, using CYBOL:

<model>

<part name="title" channel="inline" abstraction="string" model="Quo Vadis"/>

<part name="author" channel="inline" abstraction="string" model="Henryk Sienkiewicz"/>

<part name="date" channel="inline" abstraction="date" model="1896-01-01"/>

<part name="contents" channel="file" abstraction="cybol" model="contents.cybol"/>

<part name="chapter_1" channel="file" abstraction="cybol" model="chapter_1.cybol"/>

<part name="chapter_2" channel="file" abstraction="cybol" model="chapter_2.cybol"/>

<part name="chapter_3" channel="file" abstraction="cybol" model="chapter_3.cybol"/>

<part name="appendix" channel="file" abstraction="cybol" model="appendix.cybol"/>

</model>

Meta Properties

When modelling Graphical User Interfaces (GUI), a speciality to take care about is the

Position of GUI elements within their surrounding container. GUI components may have

very different orderings and positions. The Java Swing framework [112], for example, offers

BorderLayout, BoxLayout, CardLayout, FlowLayout, GridBagLayout etc.

The following example of a GUI Dialogue assumes that an interpreter knows how to handle

Compass layouts, which are the pendant of the above-mentioned BorderLayout :

<model>

<part name="title" channel="inline" abstraction="string" model="Prescription Dialogue"/>

<part name="menu_bar" channel="file" abstraction="cybol" model="menu_bar.cybol">

<property name="position" channel="inline" abstraction="string" model="north"/>

</part>

<part name="tool_bar" channel="file" abstraction="cybol" model="tool_bar.cybol">

<property name="position" channel="inline" abstraction="string" model="west"/>

</part>

<part name="contents_panel" channel="file" abstraction="cybol" model="contents_panel.cybol">

<property name="position" channel="inline" abstraction="string" model="centre"/>

</part>

<part name="status_bar" channel="file" abstraction="cybol" model="status_bar.cybol">

286 9 Cybernetics Oriented Language

<property name="position" channel="inline" abstraction="string" model="south"/>

</part>

</model>

Further meta information such as the Colour or Size of a GUI component may be given.

The following example shows how a GUI Button may be modelled as part of some GUI

panel. Again, properties like size are not modelled as part, because the button does not

consist of them, in a structural way of thinking:

<model>

<part name="exit_button" channel="file" abstraction="cybol" model="exit_button.cybol">

<property name="position" channel="inline" abstraction="integer" model="0"/>

<property name="size" channel="inline" abstraction="vector" model="80,20,1"/>

<property name="colour" channel="inline" abstraction="rgb" model="127,127,127"/>

<property name="action" channel="inline" abstraction="string" model="exit.cybol"/>

</part>

</model>

External Resources

A Text Document like the one shown in the example above often contains graphical illus-

trations called Figures, which it may include from external files. One common graphics

format is Encapsulated PostScript (EPS), for example. Graphical User Interfaces (GUI) as

modelled before do contain Icons; a GUI button may contain a Glyph and so forth.

CYBOL therefore offers ways for linking external resources, given in various formats, as

shown in the following hypothetical knowledge template. The last of the template’s parts

retrieves its data not from a file in the local file system, but across a Hyper Text Transfer

Protocol (HTTP) link instead:

<model>

<part name="pdf_document" channel="file" abstraction="pdf" model="example.pdf"/>

<part name="ogg_audio" channel="file" abstraction="ogg" model="example.ogg"/>

<part name="mpeg_video" channel="file" abstraction="mpeg" model="example.mpeg"/>

<part name="eps_image" channel="file" abstraction="eps" model="example.eps"/>

<part name="jpeg_image" channel="http" abstraction="jpeg" model="host.domain.tld/example.jpeg"/>

</model>

9.3 Constructs 287

Serialised Model

A possible (but not necessarily recommended) alternative to the linking of external resources

is to store such information (as binary code) inline in the CYBOL knowledge template. One

case in which it is necessary to store all information inline in the model is Serialisation.

A CYBOL address management application that does not rely on the existence of a Database

Management System (DBMS) probably has to store addresses in form of serialised files, such

as the one shown following. It contains two parts representing dynamically extensible lists,

one for phone numbers and another one for addresses:

<model>

<part name="honorific_prefix" channel="inline" abstraction="string" model="Dr."/>

<part name="given_name" channel="inline" abstraction="string" model="Tux"/>

<part name="family_name" channel="inline" abstraction="string" model="Penguin"/>

<part name="phone_numbers" channel="inline" abstraction="cybol" model="(

<part name="home" channel="inline" abstraction="string" model="123"/>

<part name="work" channel="inline" abstraction="string" model="456"/>

<part name="mobile" channel="inline" abstraction="string" model="789"/>

)"/>

<part name="addresses" channel="inline" abstraction="cybol" model="(

...

)"/>

</model>

The serialisation of CYBOL models causes one problem: Due to the double hierarchy (sec-

tion 7.3.3) to which belong Whole-Part relations (stored in XML attributes) and Meta

Information (stored in XML tags), it is not possible to store CYBOL models in an XML-

conform manner. Instead of referencing external files containing the corresponding CYBOL

Part models, a serialised Whole model has to contain these inline.

While XML tags were invented as pairs consisting of a begin and an end tag, XML attribute

values are enclosed by simple quotation marks. Hence, the beginning markup of an attribute

value does not look any different than its ending markup. This is a true problem, because

serialised whole-part hierarchies of CYBOL models, with attribute values containing com-

plete sub models with their own attributes, would get completely mixed up in pure XML

notation.

It was therefore inevitable to break XML-conformity and introduce two additional markup

tokens ”(and)”, indicating the beginning and end of an XML attribute value. The tokens

are extensions of the quotation marks of standard XML attributes, with one left/ right

288 9 Cybernetics Oriented Language

parenthesis, respectively. That way, the degree to which attributes are nested becomes

countable and it is always clear to which tag an attribute belongs.

Meta Constraints

The example of this section shows a possible Debian GNU/Linux [258] Package definition,

written in CYBOL:

<model>

<part name="name" channel="inline" abstraction="string" model="resmedicinae"/>

<part name="version" channel="inline" abstraction="string" model="0.1.0.0"/>

<part name="section" channel="inline" abstraction="string" model="science"/>

<part name="priority" channel="inline" abstraction="string" model="optional"/>

<part name="architecture" channel="inline" abstraction="string" model="all"/>

<part name="packages" channel="file" abstraction="cybol" model="resmedicinae-packages"/>

<part name="files" channel="file" abstraction="cybol" model="resmedicinae-files"/>

<part name="maintainer" channel="inline" abstraction="string" model="Happy Coder"/>

<part name="description" channel="inline" abstraction="string" model="Medical System"/>

</model>

The part called packages in the example above references an external CYBOL knowledge

template, which is displayed below. It represents a list of packages having different versions

and varying strengths of dependency. The strength property of the last of these packages has

the model value suggests and, it contains meta information about that property, namely a

constraint. Constraints can be, for example: minima, maxima or a choice of possible values,

as in this case.

<model>

<part name="cyboi" channel="inline" abstraction="string" model="cyboi">

<property name="strength" channel="inline" abstraction="string" model="depends"/>

<property name="version" channel="inline" abstraction="string" model=">= 1.0.0.0"/>

<property name="conflicts" channel="inline" abstraction="string" model="< 1.0.0.0"/>

</part>

<part name="cybol-healthcare" channel="inline" abstraction="string" model="cybol-healthcare">

<property name="strength" channel="inline" abstraction="string" model="depends"/>

<property name="version" channel="inline" abstraction="string" model=">= 0.1.0.0"/>

</part>

<part name="resadmin" channel="inline" abstraction="string" model="resadmin">

<property name="strength" channel="inline" abstraction="string" model="recommends"/>

<property name="version" channel="inline" abstraction="string" model=">= 0.8.0.0"/>

</part>

<part name="resmedicinae-doc" channel="inline" abstraction="string" model="resmedicinae-doc">

9.3 Constructs 289

<property name="strength" channel="inline" abstraction="string" model="suggests">

<constraint name="choice" channel="inline" abstraction="set" model="suggests,recommends"/>

</property>

<property name="version" channel="inline" abstraction="string" model=">= 0.1.0.0"/>

</part>

</model>

9.3.2 Logic Examples

The CYBOL implementation of logic models (chapter 8) needs more detailed explanation,

in particular the use of special control structures as known from Structured and Procedural

Programming (SPP) (section 4.1.6).

Operation Call

As stated previously, logic models may access and manipulate state models. The simplest

form of a logic model is an operation with associated input/ output (i/o) state models. The

following CYBOL knowledge template calls an add operation, handing over i/o parameters

as properties of the corresponding part :

<model>

<part name="addition" channel="inline" abstraction="operation" model="add">

<property name="summand_1" channel="inline" abstraction="integer" model="1"/>

<property name="summand_2" channel="inline" abstraction="knowledge" model="domain.summand"/>

<property name="sum" channel="inline" abstraction="knowledge" model="domain.result"/>

</part>

</model>

The example nicely shows how state models can be given in various formats. The summand 1

is given as constant value, defined directly in the knowledge template. Its type of abstraction

is integer. The summand 2- and sum parameters, on the other hand, are given as dot-

separated references to the runtime tree of knowledge models. Their type of abstraction is

therefore knowledge.

290 9 Cybernetics Oriented Language

Algorithm Division

Compound logic models like Algorithms, which SPP languages implement using nested

Blocks, can be expressed in CYBOL as well. It does not provide blocks in the classical

sense, but its hierarchical structure allows to subdivide compound knowledge templates,

and to cascade compound logic as well as primitive operations. The following example calls

an addition operation, before a compound algorithm, situated in an external CYBOL file,

gets executed:

<model>

<part name="addition" channel="inline" abstraction="operation" model="add">

<property name="summand_1" channel="inline" abstraction="knowledge" model="domain.number_1"/>

<property name="summand_2" channel="inline" abstraction="knowledge" model="domain.number_2"/>

<property name="sum" channel="inline" abstraction="knowledge" model="domain.number_3"/>

</part>

<part name="algorithm" channel="file" abstraction="cybol" model="logic/algorithm.cybol"/>

</model>

Simple Assignment

CYBOL does not know Variables as used in classical languages. All states a system may take

on are represented by just one Knowledge Tree (compare chapter 6), which applications may

access in a defined manner (dot-separated knowledge paths). Consequently, Assignments

are done differently in CYBOL than in classical programming languages. All kinds of state

changes go back to a manipulation of the one knowledge tree:

<model>

<part name="copy_value" channel="inline" abstraction="operation" model="copy">

<property name="source" channel="inline" abstraction="knowledge" model="domain.name"/>

<property name="destination" channel="inline" abstraction="knowledge" model="gui.name"/>

</part>

<part name="move_branch" channel="inline" abstraction="operation" model="move">

<property name="source" channel="inline" abstraction="knowledge" model="address_1.phone"/>

<property name="destination" channel="inline" abstraction="knowledge" model="address_2"/>

</part>

</model>

The first operation in the example above copies a value between two branches of the tree.

Only primitive values can be copied. The second operation removes a whole tree branch

9.3 Constructs 291

(referenced by the source property) from one parent node, and adds it to another (referenced

by the destination property).

Loop as Operation

Looping is a major technique for the effective processing of whole stacks of data. As many

other control structures, it is simplified to a logic operation, in CYBOL.

<model>

 <part name="creat_table_body" channel="inline" abstraction="operation" model="loop">

 <property name="break" channel="inline" abstraction="knowledge" model="domain.flag"/>

 <property name="model" channel="inline" abstraction="knowledge" model="logic.create_rows"/>

 </part>

</model>

procedure(int** flag) {

 while (1) {

 if (**flag) {

 break;

 }

 create_rows(flag);

 }

}

break

model

operation

Figure 9.6: Loop Control Structure and Elements in C and CYBOL

The loop operation needs two parameters to be functional: a break flag as means of inter-

ruption and a logic model to be executed in each loop cycle (figure 9.6). An index counting

loop cycles is not given, as it is in the responsibility of the logic model to manage that index,

just like the setting of the break flag, internally. The following example dynamically creates

a table consisting of a number of rows:

<model>

<part name="creat_table_body" channel="inline" abstraction="operation" model="loop">

<property name="break" channel="inline" abstraction="knowledge" model="domain.flag"/>

<property name="model" channel="inline" abstraction="knowledge" model="logic.create_rows"/>

</part>

</model>

292 9 Cybernetics Oriented Language

Conditional Execution

An obviously presupposed part in the previous example is a logic setting the break condition

(flag). If the break flag was not set, the loop would run endlessly. The following knowledge

template therefore shows a comparison operation, as it could stand at the end of the loop’s

logic model, referenced by the model property in the previous example. After having com-

pared the current loop index with a maximum loop count number, the break flag may or

may not be set. When entering its next cycle, the loop operation checks whether the flag is

set. If so, the loop is stopped:

<model>

<part name="comparison" channel="inline" abstraction="operation" model="compare">

<property name="operand_1" channel="inline" abstraction="knowledge" model="domain.index"/>

<property name="operand_2" channel="inline" abstraction="knowledge" model="domain.count"/>

<property name="operator" channel="inline" abstraction="string" model="greater_or_equal"/>

<property name="result" channel="inline" abstraction="knowledge" model="domain.flag"/>

</part>

</model>

procedure(int** index, int** count) {

 if (**index >= **count) {

 true_model();

 } else {

 false_model();

 }

}

procedure(int** index, int** count, int** flag) {

 if (**index >= **count) {

 **flag = 1;

 }

 if (**flag) {

 true_model();

 } else {

 false_model();

 }

}<model>

 <part name="comparison" channel="inline" abstraction="operation" model="compare">

 <property name="operand_1" channel="inline" abstraction="knowledge" model="domain.index"/>

 <property name="operand_2" channel="inline" abstraction="knowledge" model="domain.count"/>

 <property name="operator" channel="inline" abstraction="string" model="greater_or_equal"/>

 <property name="result" channel="inline" abstraction="knowledge" model="domain.flag"/>

 </part>

</model>
<model>

 <part name="if-then-example" channel="inline" abstraction="operation" model="branch">

 <property name="criterion" channel="inline" abstraction="knowledge" model="domain.flag"/>

 <property name="true" channel="inline" abstraction="knowledge" model="domain.true_model"/>

 <property name="false" channel="inline" abstraction="knowledge" model="domain.false_model"/>

 </part>

</model>

Figure 9.7: Condition Control Structure and Elements in C and CYBOL

Flags as one of the earliest techniques used in computing (in software as well as in hardware

[180]) are the perfect means for controlling the execution of primitive logic models, namely

operations. They represent a condition set as result of another logic model – the latter often

9.3 Constructs 293

being some kind of comparison operation. In order to execute code upon activation of a

flag, a conventional comparison control structure needs to be split up into two independent

blocks (figure 9.7), with the flag being the linking element. The flag which was set by a

comparison operation is used for branching the control flow.

The second example shows how a classical if-then statement would be written in CYBOL.

The corresponding operation is called branch and it expects three properties: a criterion flag

and two models, of which one is executed in case the flag is true and the other is executed

otherwise.

<model>

<part name="if-then-example" channel="inline" abstraction="operation" model="branch">

<property name="criterion" channel="inline" abstraction="knowledge" model="domain.flag"/>

<property name="true" channel="inline" abstraction="knowledge" model="domain.true_model"/>

<property name="false" channel="inline" abstraction="knowledge" model="domain.false_model"/>

</part>

</model>

9.3.3 Special Examples

XML is used for representing data of very different domains, and a whole plethora of XML

dialects exists. Two of them are mentioned following. The main purpose of the next exam-

ples, however, is to show how CYBOL can replace these.

Synchronous Execution

MusicXML [200] is a markup language designed to represent musical scores, specifically

common western musical notation from the 17th century onwards. In principle, CYBOL

could be used for this purpose as well. Of course, there are many details (additional prop-

erties) which would still have to be worked out in order to be able to correctly represent

complete musical scores. As most models, the Musical Work displayed in figure 9.8 can be

considered a hierarchy consisting of Parts (played/ sung by instruments/ voices). Parts in

turn consist of Measures, which consist of Notes, which finally have a Pitch and sometimes

Lyric.

The following knowledge templates deliver only short examples showing how music may be

modelled in CYBOL. Their property names were taken over from MusicXML’s element tags,

294 9 Cybernetics Oriented Language

Figure 9.8: Musical Score of Franz Schubert’s Ave Maria [200]

as elaborated in [200]. Most are self-explanatory and shall not be further discussed here.

The first example template represents an extract from a complete musical Work, consisting

of the two parts Voice and Piano:

<model>

<part name="number" channel="inline" abstraction="string" model="D. 839"/>

<part name="title" channel="inline" abstraction="string" model="Ave Maria (Ellen’s Gesang III)"/>

<part name="composer" channel="inline" abstraction="string" model="Franz Schubert"/>

<part name="poet" channel="inline" abstraction="string" model="Walter Scott"/>

<part name="voice" channel="file" abstraction="cybol" model="voice.cybol">

<property name="score_instrument" channel="inline" abstraction="string" model="P1-I14"/>

<property name="instrument_name" channel="inline" abstraction="string" model="Choir Aahs"/>

<property name="midi_instrument" channel="inline" abstraction="string" model="P1-I14"/>

<property name="midi-channel" channel="inline" abstraction="integer" model="1"/>

<property name="midi-program" channel="inline" abstraction="integer" model="53"/>

</part>

<part name="piano" channel="file" abstraction="cybol" model="piano.cybol">

<property ...

</part>

</model>

One of the Parts is shown in the next template. It consists of several measures:

9.3 Constructs 295

<model>

<part name="measure_1" channel="file" abstraction="cybol" model="measure_1.cybol">

<property name="divisions" channel="inline" abstraction="integer" model="48"/>

<property name="key_fifths" channel="inline" abstraction="integer" model="-2"/>

<property name="key_mode" channel="inline" abstraction="string" model="major"/>

<property name="beats" channel="inline" abstraction="integer" model="4"/>

<property name="beat_type" channel="inline" abstraction="integer" model="4"/>

<property name="staves" channel="inline" abstraction="integer" model="0"/>

<property name="clef_sign" channel="inline" abstraction="string" model="G"/>

<property name="clef_line" channel="inline" abstraction="integer" model="2"/>

</part>

<part name="measure_2" channel="file" abstraction="cybol" model="measure_2.cybol">

<property ...

</part>

</model>

A Measure again consists of Notes:

<model>

<part name="note_1" channel="file" abstraction="cybol" model="note_1.cybol">

<property name="duration" channel="inline" abstraction="integer" model="72"/>

<property name="voice" channel="inline" abstraction="integer" model="1"/>

<property name="type" channel="inline" abstraction="string" model="quarter"/>

<property name="stem" channel="inline" abstraction="string" model="down"/>

<property name="position" channel="inline" abstraction="integer" model="1"/>

</part>

<part name="note_2" channel="file" abstraction="cybol" model="note_2.cybol">

<property name="duration" channel="inline" abstraction="integer" model="12"/>

<property name="voice" channel="inline" abstraction="integer" model="1"/>

<property name="type" channel="inline" abstraction="string" model="16th"/>

<property name="stem" channel="inline" abstraction="string" model="up"/>

<property name="position" channel="inline" abstraction="integer" model="2"/>

</part>

<part name="note_3" channel="file" abstraction="cybol" model="note_3.cybol">

<property ...

<property name="position" channel="inline" abstraction="integer" model="2"/>

</part>

</model>

An important property to note here is the position value. It is common that two notes have

to be played at the same time, the notes then being called a Chord. In contrast to MusicXML

which provides an own tag to denote notes belonging to the same chord, CYBOL suggests

to use a position property having identical values for all notes in a chord. An interpreter

296 9 Cybernetics Oriented Language

program may thus not only read necessary sequence information, but can also figure out

which of the notes have to be played synchronously.

A fourth example represents one Note, consisting of a Pitch and Lyric text, which are the

final abstractions in this knowledge template:

<model>

<part name="pitch" channel="inline" abstraction="string" model="B">

<property name="alter" channel="inline" abstraction="integer" model="-1"/>

<property name="octave" channel="inline" abstraction="integer" model="4"/>

</part>

<part name="lyric" channel="inline" abstraction="string" model="A">

<property name="syllabic" channel="inline" abstraction="string" model="begin"/>

</part>

</model>

Presentation and Content

The Mathematical Markup Language (MathML) [117] provides means for representing math-

ematical expressions. Its specification document states:

A fundamental challenge in defining a markup language for mathematics on the

Web is reconciling the need to encode both the Presentation of a mathematical

notation and the Content of the mathematical idea or object which it represents.

The relationship between a mathematical notation and a mathematical idea is

subtle and deep. On a formal level, the results of mathematical logic raise

unsettling questions about the correspondence between systems of symbolic

logic and the phenomena they model. At a more intuitive level, anyone who

uses mathematical notation knows the difference that a good choice of notation

can make; the symbolic structure of the notation suggests the logical structure.

This observation is very important because it helps avoid mixing Content and Presentation

of data. Both are discrete models, comparable to the Domain and User Interface (UI) of a

software application, which can be translated into each other (sections 8.2 and 8.3.4). The

good side of MathML is that it [117]: allows authors to encode both the notation which

represents a mathematical object and the mathematical structure of the object itself. Its bad

side, however, is that: authors can mix both kinds of encoding in order to specify both the

presentation and content of a mathematical idea. Another disadvantage is that different

9.3 Constructs 297

tags are used for presentation and contents of a mathematical model.

CYBOL uses just four tags (section 9.2.3) but can represent mathematical expressions as

well. What MathML calls Content, becomes a Logic knowledge template in CYBOL. The

mathematical content of the formula (a + b)2 would be modelled as follows:

<model>

<part name="addition" channel="inline" abstraction="operation" model="add">

<property name="summand_1" channel="inline" abstraction="knowledge" model="domain.a"/>

<property name="summand_2" channel="inline" abstraction="knowledge" model="domain.b"/>

<property name="sum" channel="inline" abstraction="knowledge" model="domain.c"/>

</part>

<part name="exponentiation" channel="inline" abstraction="operation" model="power">

<property name="base" channel="inline" abstraction="knowledge" model="domain.c"/>

<property name="power" channel="inline" abstraction="integer" model="2"/>

<property name="result" channel="inline" abstraction="knowledge" model="domain.r"/>

</part>

</model>

And the formula’s Presentation would be defined by the following two CYBOL State knowl-

edge templates, of which the second one represents the Base that is referenced by the first

one:

<model>

<part name="base" channel="inline" abstraction="file" model="domain/base.cybol">

<property name="fence" channel="inline" abstraction="boolean" model="true"/>

</part>

<part name="power" channel="inline" abstraction="integer" model="2">

<property name="superscript" channel="inline" abstraction="boolean" model="true"/>

</part>

</model>

<model>

<part name="summand_1" channel="inline" abstraction="string" model="a"/>

<part name="operator" channel="inline" abstraction="string" model="+"/>

<part name="summand_2" channel="inline" abstraction="string" model="b"/>

</model>

Hello World

A practice popularised by Brian Kernighan and Dennis Ritchie [174] is to write as first pro-

gram one that prints the words Hello, World!, when teaching/ learning a new programming

298 9 Cybernetics Oriented Language

language. Two possible CYBOL versions of that minimal program are given following. The

first consists of only two operations: send and exit. The string message to be displayed

on screen is handed over as property to the send operation, before the exit operation shuts

down the system:

<model>

<part name="send_model_to_output" channel="inline" abstraction="operation" model="send">

<property name="language" channel="inline" abstraction="string" model="tui"/>

<property name="receiver" channel="inline" abstraction="string" model="user"/>

<property name="message" channel="inline" abstraction="string" model="Hello, World!"/>

</part>

<part name="exit_application" channel="inline" abstraction="operation" model="exit"/>

</model>

The second example template is slightly more complex. It starts with creating a domain

model that consists of just one greeting string. That string is then sent as message to the

human user via a Textual User Interface (TUI), just as in the first example. The difference

is that now, the greeting is not handed over as hard-coded string value, but is read from

the runtime knowledge model, which is indicated by its abstraction value:

<model>

<part name="create_greeting" channel="inline" abstraction="operation" model="create_part">

<property name="name" channel="inline" abstraction="string" model="greeting"/>

<property name="channel" channel="inline" abstraction="string" model="inline"/>

<property name="abstraction" channel="inline" abstraction="string" model="string"/>

<property name="model" channel="inline" abstraction="string" model="Hello, World!"/>

</part>

<part name="send_model_to_output" channel="inline" abstraction="operation" model="send">

<property name="language" channel="inline" abstraction="string" model="tui"/>

<property name="receiver" channel="inline" abstraction="string" model="user"/>

<property name="message" channel="inline" abstraction="knowledge" model="greeting"/>

</part>

<part name="destroy_greeting" channel="inline" abstraction="operation" model="destroy_part">

<property name="name" channel="inline" abstraction="knowledge" model="greeting"/>

</part>

<part name="exit_application" channel="inline" abstraction="operation" model="exit"/>

</model>

The appearance of a create part/ destroy part pair in the second example already suggests

how an application lifecycle with startup-, runtime- and shutdown phase could look like in

CYBOL.

9.3 Constructs 299

Any System?

While creating the CYBOP knowledge concepts and implementing them in the CYBOL

language, one main aim was to make that language as flexible as possible, in order to be

usable for the development of a variety of systems. It seems that CYBOL is indeed applicable

for developing standard business applications in very different domains.

It might also be usable for creating desktop environments such as the K Desktop Environ-

ment (KDE) [81] – and even configuration parts of an Operating System (OS) (the informa-

tion stored in the files of the /etc directory and the /usr/src/linux/.config file, when taking

the Linux kernel as example) could possibly be encoded in CYBOL. The same counts for the

configuration files of applications residing in the /etc directory of systems that follow the

Filesystem Hierarchy Standard (FHS). That is, both applications and their configuration

files may be written in the same format: CYBOL.

Yet to limit the scope of this work, proof for these assumptions cannot be given here.

As well, the applicability of CYBOL for programming Real Time (RT) systems was not

investigated yet. A slightly more extensive example, however, is given in chapter 11, which

describes the Res Medicinae prototype – a yet very incomplete Electronic Health Record

(EHR) application.

9.3.4 Inheritance as Property

One fundamental concept of Object Oriented Programming (OOP) is Inheritance (section

4.1.15). It was also determined as a basic concept of human thinking, where it is called

Categorisation.

In principle, there is no problem with implementing inheritance in CYBOL. If done, however,

it would differ from traditional class architectures as known from OOP. Classical OOP

systems resolve inheritance relationships at runtime; CYBOP systems, on the other hand,

would resolve them just once when creating a knowledge model (instance) from a knowledge

template. After instantiation, all inheritance relationships are lost since instances are stored

as purely hierarchical whole-part models in memory, without any links to super models.

The following knowledge template shows how inheritance could be realised in CYBOL.

Contrary to OOP classes which hold a link to their corresponding super class as intrinsic

property, a CYBOL knowledge template does not know itself from which super template to

300 9 Cybernetics Oriented Language

inherit from. That information is stored as extrinsic property outside the template instead,

in other words in the whole template to which the inheriting template belongs.

<model>

<part name="ok_button" channel="file" abstraction="cybol" model="gui/ok_button.cybol">

<property name="super" channel="file" abstraction="cybol" model="button.cybol"/>

<property name="size" channel="inline" abstraction="vector" model="90,30,1"/>

<property name="colour" channel="inline" abstraction="rgb" model="127,127,127"/>

</part>

</model>

One of the properties in the example template above carries the name super. Its model

references another template which is treated as super template of the corresponding part

the property belongs to. With slight modifications on the property name super, which has

to be unique among all properties of a part, it would even be possible to implement Multi-

ple Inheritance. Dependency complications are not to be expected because all inheritance

relationships are forgotten in runtime models.

Although the described inheritance mechanism was tested successfully in an older proto-

type application, it has not been implemented in CYBOL. None of the created example

applications showed a need for it, nor did any of them promise more effective programming.

The reuse of CYBOL templates is realised through composition only, that is fine-granular

templates make up more coarse-grained ones. This counts for both, state- as well as logic

models, since they are not bundled like in OOP. And polymorphism as effect does not have

to be considered.

9.3.5 Container Mapping

State-of-the-art programming languages offer a number of different container types, partly

based on each other through inheritance. Section 4.1.15 of this work identified Container

Inheritance as one reason for falsified program results.

Chapter 7 then introduced a Knowledge Schema which represents each item as Hierarchy

by default, the result being that different types of containers are not needed any longer.

A possible unification of container types was already discussed in section 7.3.5. But how

are the different kinds of container behaviour implemented in CYBOL? Table 9.1 gives an

answer. As can be seen, CYBOL is able to represent many container types.

9.4 Comparison 301

Classical Container Type Realisation in CYBOL Knowledge Template

Tree Hierarchical whole-part structure

Table Like a Tree, as hierarchy consisting of rows which consist

of columns

Map Parts have a name (key) and a model (value)

List Parts may have a position property

Vector A model attribute may hold comma-separated values; an

extra template holds a dynamically changeable number of

parts

Array Like a Vector; characters are interpreted as string

Table 9.1: Mapping Classical Containers to CYBOL

9.3.6 Hidden Patterns

There are a number of software patterns (section 4.2) that may not be obvious (hidden) at

first sight, but have been considered in the design of the CYBOL language.

Most obviously, CYBOL knowledge templates follow the Composite pattern, in a simplified

form. All templates represent a compound consisting of part templates, which leads to a

tree-like structure. But this also means that related patterns (see section 7.2.1) like Whole-

Part and Wrapper are representable by CYBOL knowledge templates. A template as whole

wraps its parts.

Knowledge templates with similar granularity can be collected in one directory, in other

words one common ontological level. Templates with smaller granularity, that is those that

the more coarse-grained templates consist of, can be placed in another common layer and

so forth. What comes out of it is a system of levels – one variant of the Layers pattern.

9.4 Comparison

Other projects and efforts have tried to craft languages improving the representation and

expressivness (in particular the semantics) of knowledge documents. Some of them are based

on XML, just like CYBOL. The following subsections will dwell on the differences between

two other languages and CYBOL.

302 9 Cybernetics Oriented Language

9.4.1 RDF

Using the Resource Description Framework (RDF) described in section 4.5.4, a catalogue

of products available at a certain domain www.example.com might be encoded as in the

following example [347]:

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:exterms="http://www.example.com/terms/">

<rdf:Description rdf:about="http://www.example.com/2002/04/products#item10245">

<rdf:type rdf:resource="http://www.example.com/terms/Tent"/>

<exterms:model rdf:datatype="&xsd;string">Overnighter</exterms:model>

<exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:sleeps>

<exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>

<exterms:packedSize rdf:datatype="&xsd;integer">784</exterms:packedSize>

</rdf:Description>

... other product descriptions ...

</rdf:RDF>

This piece of code contains just one product description: that of item10245, which is typed

as a Tent. It owns properties like its model, sleeps, weight and packed size. The XML

namespace declaration in line four specifies that the namespace Uniform Resource Indicator

reference (URIref) http://www.example.org/terms/ is to be associated with the exterms:

prefix. URIrefs beginning with the string http://www.example.org/terms/ are used for

terms from the vocabulary defined by the example organization, example.org. The ENTITY

declaration specified as part of the DOCTYPE declaration in the second line defines the

entity xsd to be the string representing the namespace URIref for XML Schema datatypes.

This declaration allows the full namespace URIref to be abbreviated elsewhere in the XML

document by the entity reference &xsd;, so that data types like string or integer may be

written as &xsd;string and &xsd;integer, respectively.

The same product catalogue example written in CYBOL would look like this:

<?xml version="1.0"?>

<model>

<part name="item10245" channel="http" abstraction="cybol"

model="www.example.com/2002/04/products#item10245">

<property name="type" channel="http" abstraction="rdf" model="www.example.com/terms/Tent"/>

<property name="model" channel="inline" abstraction="string" model="overnighter"/>

<property name="sleeps" channel="inline" abstraction="integer" model="2"/>

<property name="weight" channel="inline" abstraction="decimal" model="2.4"/>

9.4 Comparison 303

<property name="packed_size" channel="inline" abstraction="integer" model="784"/>

</part>

... other products and their properties ...

</model>

One can find the product identifiable by the name item10245, as one part of the catalogue, as

well as its properties representing meta (descriptive) information. The product’s model has

the abstraction cybol which means that the corresponding resource is available in CYBOL

format. The resource’s channel is http which means that it has to be read using that

protocol and communication mechanism. Other abstractions are possible, of course. The

type property in the example is available in RDF format, as indicated by its abstraction

attribute.

The meaning of the single XML attributes was explained in previous sections. Up to now,

there was no need to apply domains for building attribute- or tag names. CYBOL’s tags,

that is their number as well as their names, are fixed. The same counts for its attributes.

What is changeable, are attribute values alone.

While RDF’s main focus is on providing the means for making descriptive (meta) statements

about a subject, CYBOL provides these meta information together with structural (whole-

part) information, encoded in form of a double hierarchy (section 7.3.3).

9.4.2 OWL

Since the Web Ontology Language (OWL) described in section 4.5.4 is a vocabulary extension

to RDF, the points explained in the context of RDF before do count for OWL as well. Further

considerations are done using the following OWL code example representing an incomplete

extract of a description of Wine (potable liquid) [346]:

<rdf:RDF ...

<owl:Class rdf:ID="Wine">

<rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>

<rdfs:label xml:lang="en">wine</rdfs:label>

<rdfs:label xml:lang="fr">vin</rdfs:label>

...

</owl:Class>

...

<owl:Class rdf:ID="WineColour">

<rdfs:subClassOf rdf:resource="#WineDescriptor"/>

<owl:oneOf rdf:parseType="Collection">

304 9 Cybernetics Oriented Language

<owl:Thing rdf:about="#White"/>

<owl:Thing rdf:about="#Rose"/>

<owl:Thing rdf:about="#Red"/>

</owl:oneOf>

</owl:Class>

...

<owl:Class rdf:ID="Vintage">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#vintageOf"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

</rdf:RDF>

A class Wine inheriting from a super class PotableLiquid is defined first. Labels in several

languages are given. Further, two classes WineColour and Vintage are defined. Properties

referring to the WineColour class may take on one out of a collection of three colour values.

The Vintage class has the restriction that at least one property vintageOf must exist. If

the Wine class or one of its sub classes is connected to the WineColour or Vintage class

(what is not shown here to keep the code example simple), it has to consider their possible

restrictions.

An approximated CYBOL pendant to the OWL example above is shown following:

<model>

<part name="wine" channel="http" abstraction="cybol" model="example">

<property name="super" channel="file" abstraction="cybol" model="food/potable.cybol"/>

<property name="label" channel="file" abstraction="cybol" model="terminology/wine.cybol"/>

<property name="colour" channel="inline" abstraction="string" model="">

<constraint name="choice" channel="inline" abstraction="string" model="red,white"/>

</property>

<property name="vintage" channel="inline" abstraction="integer" model="">

<constraint name="requirement" channel="inline" abstraction="boolean" model="true"/>

</property>

</part>

</model>

9.5 Tool Support 305

Wine as one part of a greater model (such as a catalogue) is described. Its properties are

equivalent to those in the OWL example above. The values of the colour property are

constrained to a choice of two colours, and the vintage property is required to exist, i.e. it

is not deletable.

9.5 Tool Support

When proposing a new theory of computing, or a new programming language, it is common

to provide a suitable Integrated Development Environment (IDE) supporting the application

of that theory or language. If not the tools themselves, a recommendation for how they may

look like should be given at least. This is what the following sections try to achieve.

9.5.1 Template Editor

CYBOL applications can be written in an XML-conform way. The use of standard XML

tools to edit and validate CYBOL knowledge templates, at design time, is therefore possible.

An exception are serialised runtime CYBOL models, possibly made persistent in form of

files or in a Database (DB), for which XML conformity has to be given up due to additional

markup tokens, as explained in section 9.3.1.

Due to the fixed structure of CYBOL knowledge templates (four XML tags, four XML

attributes), more convenient- than standard XML editors shall be providable. Figure 9.9

shows an editor proposal supporting both, the Whole-Part- as well as the Meta Hierarchy of

CYBOL. There are three characters indicating the action that a click on a tree node would

evoke:

+ Open the whole-part hierarchy

& Open the meta hierarchy (properties and constraints)

- Close the hierarchy

The displayed template represents a graphical dialogue with its title, menubar, toolbar, panel

and status bar. The opened panel node shows its parts, namely button and label. The opened

status bar node, on the other hand, shows its properties size and colour, and additionally

the size’s minimum constraint. The attribute values of a selected node would be editable

in a table like the one shown on the right-hand side of the figure.

306 9 Cybernetics Oriented Language

 abstraction

 string

 cybol

 model

 Res Medicine

 /resmedicinae/gui/menu_bar.cybol

 channel name

 inline

 file

 cybol /resmedicinae/gui/tool_bar.cybol file

 cybol /resmedicinae/gui/panel.cybol file

 cybol /resmedicinae/gui/status_bar.cybol file

title

+ menu_bar

& panel

tool_bar+

- status_bar

dialogue&

whole-part relation
& button

label

meta information
- size

colour&

minimum

Figure 9.9: CYBOL Editor Supporting Double Hierarchies by Triple Choice

9.5.2 Knowledge Designer

Section 4.4.4 classified diagrams of the Unified Modeling Language (UML) notation into

Structure, Behaviour and Interaction. With interaction- being a subset of behaviour dia-

grams, there are actually just two main categories for UML diagram classification: Structure

and Behaviour. Since the idea underlying this work is to look at systems from two perspec-

tives (section 5.3): Statics and Dynamics, whereby the former gets split up into two further

perspectives: States and Logic, the question arises whether or not UML diagrams could be

categorised accordingly? The answer is: Not quite. There are a number of aspects that have

to be considered:

- UML classes bundle state- and logic aspects (attributes and methods). A CsD does

not only express the relations between attributes, but also those between methods.

This fact makes it impossible to sort that diagram into just one of the categories:

state or logic. Likewise does an SD, to take a second example, not just display the

order of message calls, but also their bundling with objects. CYBOL templates, on

the other hand, strictly separate state- and logic knowledge.

- Classes in a CsD are linked network-like and may have bidirectional relations. Com-

position (recursion) as concept is missing in the class element of the UML meta model.

The CYBOP knowledge schema is innately hierarchical and uses solely unidirectional

9.5 Tool Support 307

relations.

- UML objects (instances) know from which class (type) they stem from. Not at least,

this is necessary for mechanisms like polymorphism (based on runtime inheritance) to

work. CYBOL models know nothing about the original template they were initialised

with; any links to it are lost.

However, an attempt will now be made to categorise the UML diagrams accordingly:

• Statics (States): CsD

• Statics (Logic): SMD, AD, SD, TiD, CoD, IOD, UCD

• Dynamics: ObD, CSD

• Others: CmD, PD, DD

All diagrams formerly belonging to either Behaviour or Interaction, are now summed up in

the Statics (Logic) category. Former Structure diagrams are split up into the one describing

Statics (States) and those illustrating Dynamics (runtime aspects). Some diagrams dealing

with issues like packaging or distribution are put into an extra category called Others.

Because of the different programming philosophy behind CYBOP, standard UML diagrams

cannot be used unalteredly for the design of CYBOL applications. Some of them, however,

could be quite useful, when adapted a bit. The Importance column in table 4.1 indicated that

not all diagram types are really needed to effectively design a system. For creating CYBOL

applications, the following four can be considered sufficient. They model the structure of:

1. Template Diagram (TD): one design-time template (hierarchical, ontological concept),

with purely unidirectional relations; does not illustrate relations between different

concepts, as these are only established by logic models at runtime; could look like

CsD or a tree, only that a template may not only represent states, but also logic

(algorithms, workflows) (figure 9.10)

2. Model Diagram (MD): the runtime model tree; comparable to ObD, but a simple tree

with named nodes would suffice; is important because input/ output parameters of

operations are given as dot-separated paths to runtime knowledge tree models (figure

9.11)

3. Organisation Diagram (OD): template directories; could look like CmD or PD or a

simple tree (figure 9.12)

308 9 Cybernetics Oriented Language

4. Communication Diagram (CD): a network of communicating systems, which may run

on the same or on different physical machines (nodes); could look like DD; not to be

mixed up with UML CoD (figure 9.13)

status_bar

 status_panel

 insert_overwrite_panel

dialog

 title

 menu_bar

 tool_bar

 panel

 status_bar

menu_bar

 file_item

 edit_item

 view_item

 help_item tool_bar

 file_open_icon

 file_save_icon

 cut_icon

 copy_icon

 paste_icon

 zoom_icon

panel

 instruction_label

 tab_pages

 button button

 label

 glyph

Figure 9.10: CYBOL Template Diagram (TD) Proposal

As said above, the four diagrams may look similar to their corresponding UML pendant.

For demonstration reasons, one possible proposal is given for each diagram type. The TD

(figure 9.10) illustrates the same graphical dialogue that was shown in the Template Editor

(figure 9.9), in the previous section. The diagram looks pretty similar to a UML CsD.

Attributes and methods are not bundled in one concept though, and inheritance does not

exist. Associations are drawn if a concept links to an external concept which may reside in

another file (like the menu bar), for example. If a part (like the title) is hold inline in the

concept, on the other hand, an association is not displayed. Upon clicking on a part in a

concept box, a dialogue opens up that allows the entry of meta data like the part’s channel,

abstraction, model and further properties (details).

The MD (figure 9.11) displays the runtime models that were instantiated with knowledge

templates providing the initial values. Again, the parts of the graphical dialogue of figure

9.9 are used in it.

The OD (figure 9.12) shows packages into which CYBOL knowledge templates may be or-

ganised. Packages do normally correspond to directories on file system level. The figure

9.5 Tool Support 309

title

menu_bar

panel

tool_bar

status_bar

dialogue

button

file_item

edit_item

...

label

glyph

Figure 9.11: CYBOL Model Diagram (MD) Proposal

contains a domain package consisting of two sub packages, one containing knowledge tem-

plates for administrative patient data and the other holding templates for clinical data

of a patient. Also, there is a User Interface (UI) package containing three sub packages,

for: Textual UI (TUI), Graphical UI (GUI) and Web UI (WUI). Both, domain- as well as

user interface packages may be accessed from the operations residing in the logic package.

The CD (figure 9.13), finally, shows a number of independent systems communicating with

each other. An Electronic Health Record (EHR) manager application may be found in

the center of the figure. Patients communicate with it using a WUI; nurses using a GUI

and doctors using a TUI (for better performance). A patient gets identified by asking a

person identification service. Documents may be exchanged with a hospital system and

images with a special image storage system.

Besides these essential diagrams, additional ones may be used, of course. UML diagrams

like the AD, SD or TiD assist in modelling the flow of actions, that is sequences of logic

operations over time. Their ability to refine actions in another level of granularity is of special

interest. When removing the objects bundled with method calls, they are well suitable for

CYBOL. They use different graphical elements, but in the end would store their knowledge

in the same templates. The transitions between different states of the runtime knowledge

tree over time are what the SMD wants to display. It may well be used with CYBOL. But

310 9 Cybernetics Oriented Language

user_interface

tui

gui

wui

domain

clinicaladministrative

logic

Figure 9.12: CYBOL Organisation Diagram (OD) Proposal

not only an application’s behaviour over time is of interest, the positions and expansions of

its elements in space are as well important. This mostly affects the design of user interfaces,

graphical or textual. Designers for these are therefore added to the list of useful diagrams.

The usefulness of feature model diagrams (section 4.4.4) for expressing constraints that

branches of the knowledge tree impose on each other could not be investigated in this work,

as this would break its frame.

Since CYBOL files contain all knowledge that is needed to define a complete application

system, the generation or parsing of classical source code is not needed anymore, as chapter

12 will mention again. Therefore, CYBOL knowledge design tools do only have to pro-

vide scanner- and generator functionality for CYBOL (in order to formalise the knowledge

designed as semi-formal diagrams), but not for implementation languages.

9.5.3 Model Viewer

Finally, it would be very helpful to have a tool displaying not just planned-, but real runtime

statuses of the knowledge model tree, in other words a live memory snapshot displayed in a

meaningful, hierarchical form. Such a Model Viewer, as it might be called, would not only

help in debugging applications, but could be extended towards a runtime Model Editor,

allowing to move whole knowledge tree branches from one parent node to another.

9.5 Tool Support 311

patient_user

doctor_user

nurse_user ehr_manager

person_identification

image_storage

hospital_system

wui

gui

tui document

image

id

Figure 9.13: CYBOL Communication Diagram (CD) Proposal

To what concerns the usage of existing UML tools for modelling CYBOL applications, it

has to be said that they are most likely not able to support CYBOP models, nor can they

be easily adapted. Even though the diagram specifications may be similar, the underlying

programming principles and model repositories are just too different. It might be possible,

however, to create interfaces partly translating CYBOL-encoded (XML) models into UML

models, possibly using the XML Metadata Interchange (XMI) standard or the like. It will

presumably be easier to translate CYBOL- into UML models, than vice versa, because

CYBOL is very expressive. While CYBOL knowledge templates distinguish between whole-

part- and meta elements, for example, UML models do not. Another point is that CYBOL

holds state- and logic knowledge in separate templates, that would have to be merged into

common classes when being translated into UML. But the investigation and evaluation of

further details concerning the tool support is left for future works.

10 Cybernetics Oriented Interpreter

Two Things are needed to do our Work:

tireless Endurance and the Willingness to throw something,

that has cost much Time and Effort, away again.

Albert Einstein

The previous chapter described how the CYBOP concepts introduced in part II of this work

can be implemented in a formal language carrying the abbreviated name CYBOL. The now

still missing piece is a program able to dynamically handle static CYBOL sources, as men-

tioned in chapter 6. This chapter therefore describes the Cybernetics Oriented Interpreter

(CYBOI) [256] which can do just that.

10.1 Architecture

The following sections dwell on how CYBOI fits into a general computer architecture, and

then explain its inner structure and software patterns used.

10.1.1 Overall Placement

Considering an overall computer system architecture, CYBOI is situated between the ap-

plication knowledge existing in form of CYBOL templates and the Hardware controlled by

an Operating System (OS), as was shown in figure 6.7. CYBOI can thus also be called a

Knowledge-Hardware-Interface (synonymous with Mind-Brain-Interface).

There are analogies to other systems run by language interpretation. Table 10.1 shows those

between the Java- and CYBOP world. Both are based on a programming theory, have a

314 10 Cybernetics Oriented Interpreter

Criterion Java World CYBOP World

Theory OOP in Java CYBOP

Language Java CYBOL

Interpreter Java VM CYBOI

Table 10.1: Analogies between the Java- and CYBOP World

language and interpreter. A theoretical model of a computer hardware- or -software system

may be called an Abstract Computer or Abstract Machine [60]. If being implemented as

software simulation, or if containing an interpreter, it is called a Virtual Machine (VM).

Kernighan and Pike write in their book Practice of Programming [173]:

Virtual machines are a wonderful, old idea, that latterly, through Java and

the Java Virtual Machine (JVM), came into fashion again. They are a simple

possibility to gain portable and efficient program code, which can be written in

a higher programming language.

In that sense, CYBOI is certainly a VM. It provides low-level, platform-dependent system

functionality, close to the OS, together with a unified knowledge schema (chapter 7) which

allows CYBOL applications to be truly portable, well extensible and easier to program,

because developers need to concentrate on domain knowledge only. Since CYBOI interprets

CYBOL sources live at system runtime, without the need for previous compilation (as in

Java), changes to CYBOL sources get into effect right away, without restarting the system.

The use of an OS, however, has to be seen as temporary workaround. One future aim is to

remove all OS dependencies by stepwise integrating hardware device driving functionality

and other OS concepts into CYBOI (chapter 13).

10.1.2 Inner Structure

To what concerns its inner architecture, there are two basic structures underlying CYBOI:

1. Knowledge Container: An array-based structure usable for storing static knowledge

in form of primitive- and compound models, and capable of representing a map,

collection, list and tree

2. Signal Checker: A loop-based structure usable for dynamically reading signals from

a queue, and capable of processing them after their priority, in a special handler

10.1 Architecture 315

All modules, into which CYBOI is subdivided, are built around these two core structures.

Having read chapter 8 demonstrating the existence of state- and logic knowledge, one might

argue that there should be two knowledge containers, one for each kind. But because

knowledge models may be placed not only in space or time, but possibly other dimensions,

too (like mass, for the weights in an artificial neural network), the prototype emerging from

this work stores state- and logic-, as well as any other models in one and the same knowledge

tree.

Not unlike John von Neumann’s model of a computing machine [308], which distinguishes

Memory, Control Unit, Arithmetic Logic Unit (ALU) and Input/ Output (i/o), CYBOI’s

modules are grouped into four architectural parts, as illustrated in figure 10.1. These have

the following functionality:

• Memoriser: data creation, -destruction and -access (after Neumann, it contains not

only data, but also the operations that are applied to them)

• Controller: lifecycle management, signal handling, i/o filters

• Applicator: operation application (comparison, logic, arithmetic and more)

• Globals: basic constants and variables, as well as a logger

cyboicyboi

controllerapplicatormemoriserglobals

tester

constants

variables

logger

array

creator

accessor

communicator

converter

translator

boolean

comparison

arithmetic

creation

communication

lifecycle

cyboi

manager

checker

handler

Figure 10.1: CYBOI Architecture consisting of Four Parts

The i/o data handling is not separated out here (as opposed to von Neumann’s model); it

is managed by the controller modules. The i/o data themselves, representing states, are

316 10 Cybernetics Oriented Interpreter

stored in memory. Global constants and variables are necessary additions. More details on

the modules’ functionality are given in section 10.2.

10.1.3 Pattern Merger

A variety of software patterns (section 4.2) can be found when inspecting CYBOI’s architec-

ture. Most of them, especially those relying on Object Oriented (OO) principles, are used

in an adapted form, as described following.

Firstly, there are those that can be summed up under the umbrella term Translator Patterns:

Model View Controller (MVC), Data Mapper and Data Transfer Object (DTO). As section

8.2 tried to show, they all contain two state models, one logic model and a controlling unit,

which is why it is possible to unify- and place them into one common architecture. CYBOI

represents the unit controlling all action, on a low system level. It stores state- as well as

logic models in one common knowledge tree, and uses the rules encoded in logic models to

translate state models into each other.

Secondly, there is the Pipes and Filters pattern which CYBOI uses not only to instantiate

knowledge templates, but also for system communication. An input (i/p) state (like a

persistent, serialised knowledge template) runs through a cascade of filters, namely Creator,

Communicator, Converter and Translator, before it is processed (as transient knowledge

model) inside the system, to be finally forwarded in opposite direction through the same

filters, resulting in an output (o/p) state.

Thirdly, CYBOI acts as Microkernel and Broker, at the same time. It calls special threads

(internal servers) managing data input/ output (i/o), and has the capability to commu-

nicate with remote systems (external servers), for data transfer. The actual impulse for

communication comes from a passive knowledge model (adapter) that is actively processed

by CYBOI. Since that impulse is not a direct method call, but either a send- or receive

operation with varying parameters, special Proxy models are not needed anymore. CYBOI

may act as client and server, at the same time, which enables the applications running within

it to act as Peer to Peer (P2P) systems (section 3.8). It incorporates a signal (event) loop

(like the broker) and handles low-level system (socket) communication (like the bridge).

The fact that future versions of CYBOI will be able to interpret CYBOL knowledge tem-

plates containing Graphical User Interface (GUI) descriptions, makes it a GUI Renderer.

The task of a renderer is to translate GUI models into hardware-understandable function

10.1 Architecture 317

calls and protocols. In the case of CYBOI, the graphical environment supported first will be

the X Window System (X) XFree86 [58] variant. The step towards rendering models given

in Hyper Text Markup Language (HTML) format is not far then, so that CYBOI may act

not only as web server, but also as web browser. All that, together with further additions,

will make it virtually an All-Rounder system.

The usage of simplified forms of patterns like Composite (inheritance omitted), Whole-Part,

Wrapper or Layers, for knowledge storage, was already mentioned in section 9.3.6.

Unfavourable patterns as mentioned in section 7.2.1 (those with global access or bidirectional

dependencies) were avoided.

Finally, the merged appearance of patterns in CYBOI (and CYBOL for that matter) brings

software development one step closer to pattern-less application programming. Application

developers are freed from the burden of repeatedly figuring out suitable patterns, and enabled

to concentrate on modelling pure domain knowledge, based on the concept of Hierarchy,

instead.

10.1.4 Kernel Concepts

Although certainly not qualifying as Operating System (OS), CYBOI uses some similar

concepts. However, it is not easy to assign CYBOI to one of the four broad categories of

OS kernels, which the Wikipedia Encyclopedia [60] describes as follows:

1. Monolithic Kernels: providing rich and powerful abstractions of the underlying hard-

ware

2. Microkernels: providing a small set of simple hardware abstractions and using appli-

cations called servers to provide more functionality

3. Hybrid Kernels: being much like pure microkernels, except that they include some

additional code in kernelspace to increase performance

4. Exokernels: providing minimal abstractions but allowing the use of library operating

sytems to provide more functionality via direct or nearly direct access to hardware

Just like a Monolithic Kernel, CYBOI encapsulates low-level functionality like memory

management and provides a high-level virtual interface (operations), over which CYBOL

applications may access it. Although the processing of signals happens in its main process,

CYBOI has to rely on a few communication services, running in their own threads, and

318 10 Cybernetics Oriented Interpreter

control their data exchange. This is (roughly) comparable to the Microkernel design which

was mentioned as pattern in section 10.1.3 before. But these services sharing a common

address space (Internals Memory and Signal Memory) with the CYBOI kernel, actually

makes CYBOI a Hybrid Kernel. The only existing data in user address space (Knowledge

Memory) are knowledge models that have been created from CYBOL knowledge templates.

The kernel category coming closest to CYBOI’s design, however, is the Exokernel. This

is because CYBOI, though serving as Hardware Abstraction Layer (HAL) to CYBOL ap-

plications (what is actually known from classic monolithic- and microkernels), also has a

central Signal Checker control loop calling subroutines managing a part of the hardware or

software, which, after [60], were one of the simplest methods of creating an exokernel.

The above-mentioned services provide Input/ Output (i/o) functionality to CYBOI so that it

can communicate (virtual world) ideas with other (human or technical) systems, across (real

world) hardware. The services may be configured, started up, interrupted and shutdown via

CYBOL operations. Similar to the Self Awareness of human systems (mentioned in section

8.1.4), a CYBOL application has to know about available i/o services, in order to actually

use them. This configuration information may be stored in CYBOL files as well.

Another thought turns around the Process concept [304], which is used to share computing

time of the Central Processing Unit (CPU) as well as resource space in Random Access

Memory (RAM) between applications. One then says: Every application runs in a separate

process. The example environment in chapter 3 contained many different kinds of inter-

communicating systems, not all of which have to run on a separate physical machine, but

surely in a separate process, if on one-and-the-same machine. That way, one machine may

host multiple application systems.

However, the existence of many program processes running concurrently in an OS holds

conflicts. It necessitates ways for Inter-Process Communication (IPC), that assure the

integrity of data in memory and avoid deadlocks (blocking of the system). Common IPC

methods include [310, 304]: Pipes and Named Pipes, Message Queueing, Semaphores, Shared

Memory and Sockets.

A different approach was chosen in CYBOI: It is the only process running. CYBOL applica-

tions reside as separate knowledge models in the Knowledge Memory (user address space),

and CYBOI controls them all. This is the exact opposite of running one process per appli-

cation. However, it is unclear, at first, how multiple applications running in parallel receive

their corresponding signals. CYBOI needs to evaluate incoming signals and then call the

right logic of the right application. But how to do that?

10.1 Architecture 319

The application to which a signal is sent can be identified, depending on the communication

mechanism used. A keyboard pressed or mouse clicked event, for example, always references

the top-most window in a GUI environment. Menu-, toolbar- and other buttons of the top-

most window in turn reference a logic (algorithm) whose dot-separated name starts with

that of the application. Within CYBOI, applications have to have a unique name, of course,

so that signals can be addressed correctly, to the right receiver. Once a logic routine is

identified, it can be sent as new signal to be processed by the signal loop. Another example

would be signals arriving over network. Also here, applications can be identified, for example

by a special Port that was assigned to them beforehand. A remote call references a specific

logic by name so that it can be processed locally. Equally named local procedures are

distinguished by the application name identified before. Within an application, logic names

have to be unique, of course.

10.1.5 Security

Berin Loritsch of the former Apache Avalon Project [17] writes that system Security has

three distinct concerns, of which Encryption is only a part:

1. Authentication: authoritative validation of the identity of a party, such as a software

component

2. Authorisation: deciding what access a component has to system resources

3. Architecture: usage of a proper, secure architecture

Since this chapter is about CYBOI’s architecture, what interests the most here is point

number three. But how to ensure a secure architecture? The avoidance of global data

access and bidirectional dependencies is clearly a requirement (section 7.2.2), which CYBOI

accomplishes through disregard of the corresponding patterns (section 10.1.3). Any kind

of application knowledge resides in its Knowledge Memory, whose tree structure may be

navigated along well-defined, unidirectional paths.

One may wonder how address spaces of the different applications are protected, so that one

application may not access another one’s models? Traditionally, the process concept assures

that separation, but with CYBOI being the only process, and all applications being part of

it, another solution needs to be applied. The exact mechanism to solve this in CYBOI yet

has to be determined. However, since all signals have to pass the same, central signal loop,

they all can be checked for permissions, before being processed, or filtered out, if necessary.

320 10 Cybernetics Oriented Interpreter

It would be imaginable and not difficult, to attach an application name as a signal’s origin,

or a unique passphrase as additional meta information to a signal memory’s signals, that

own an Identifier (ID) anyway. The signal loop or signal handler could then decide whether

or not to send a signal to a specific application.

Attached meta information of that kind would be comparable to a concept called Capability,

which is known from Secure Computing, a subfield of Security Engineering [60]. It is the

alternative to Access Control Lists (ACL), another means of enforcing firstly: Mandatory

Access Control, and secondly: Privilege Separation (where an entity has only the privileges

that are needed for its function). Wikipedia [60] writes on this:

Capabilities (also known as Key) achieve their objective of improving system

security by being used in place of Plain References. A plain reference (for

example, a path name) uniquely identifies an object, but does not specify which

Access Rights are appropriate for that object and the user program which holds

that reference. Consequently, any attempt to access the referenced object must

be validated by the operating system, typically via the use of an Access Control

List (ACL). In contrast, in a pure capability-based system, the mere fact that a

user program possesses that capability entitles it to use the referenced object in

accordance with the rights that are specified by that capability. In theory, a pure

capability-based system removes the need for any ACL or similar mechanism,

by giving all entities all and only the capabilities they will actually need.

With almost all important Operating Systems (OS) still using ACL, for various historical

reasons, CYBOI could be seen as chance to implement a pure capability-based system. Since

it concentrates all knowledge in one container realised as tree structure, and processes all

signals in one central loop, security by design is given, and security checks of different shade

can be easily applied to all knowledge models and all signals. These checks of dynamic

runtime models are a necessary supplement to the checks of static CYBOL template files.

Traditional OS do the latter via File Descriptors (also called File Handles), which are

facilities very similar, but not equal to capabilities.

In the opinion of Wikipedia [60], one main reason why the benefits of a pure capability-based

system could not be realised in a traditional OS environment, were the fact that entities

which might hold capabilities (such as processes and files) cannot be made persistent in such

a way that maintains the integrity of the secure information that a capability represents.

The OS could not trust a user program to read back a capability and not tamper with the

10.2 Functionality in Detail 321

object reference or the access rights. Consequently, when a program wished to regain access

to an object that is referenced on disk, the OS had to have some way of validating that

access request, and an ACL or similar mechanism were mandated.

Orthogonally Persistent OS like the Flex Machine and its successor Ten15, as [60] writes,

were a novel approach to solving this problem. They maintained the integrity and security

of the capabilities contained within all storage, both volatile and nonvolatile (dynamic and

static), at all times. Further, such OS were responsible for storage allocation, deallocation

and garbage collection, which immediately precluded a whole class of errors arising from the

misuse (deliberate or accidental) of pointers. Two other features were:

- Tagged, Write-Once Filestore, which allows arbitrary code and data structures to

be written and retrieved transparently, without recourse to external encodings; data

could thus be passed safely from program to program

- Remote Capabilities, which allow data and procedures on other machines to be ac-

cessed over a network connection, again without the application program being in-

volved in external encodings of data, parameters or result values

This reads like a description of CYBOI, which is able to parse/ serialise all knowledge from/

to CYBOL sources (e.g. files), and to handle low-level storage- and communication mech-

anisms. More in section 10.2.6. If, in this manner, user programs (CYBOL applications)

were relieved of these responsibilities, there would be no need to trust them to reproduce

only legal capabilities, nor to validate requests for access using an ACL-like mechanism.

However, these were just some thoughts on how to bring yet more security into CYBOI’s

architecture. The details will have to be figured out in future works (chapter 13).

10.2 Functionality in Detail

CYBOI’s architecture is based on three main parts, as introduced by figure 10.1 before:

Controller, Applicator and Memoriser. (The Globals package is neglectable for the following

explanations, since it contains static constants and variables that are omnipresent.) They

appear again in figure 10.2 which shows the Dependencies between them. Additionally, the

Controller modules and their Control Flow is illustrated. Starting from the cyboi module,

the following subsections will demonstrate how CYBOI functions internally, along the flow

of control touching the modules: manager, checker and handler. After that, the execution of

322 10 Cybernetics Oriented Interpreter

operations in the Applicator as well as the creation and transition of data in the Memoriser

are described.

 controller

 applicator memoriser

cyboi checker

handler

manager

cyboi control flow

cyboi part dependencies

Figure 10.2: CYBOI Part Dependencies and Control Flow

10.2.1 Process Launching

As every other C-, C++- or Java program, CYBOI has a main procedure (cyboi module)

serving as entry point for its process to run. It triggers the system lifecycle (in the meaning

of startup and shutdown of a system process). After having initialised global variables and

having read the command line parameter, the rest of the system is started up by the manage

procedure (manager module).

10.2.2 Lifecycle Management

To the startup routine belong the creation of the three containers: knowledge memory, signal

memory and internals memory, and the creation of a startup model which is placed as first

signal into the signal memory. Additional meta information given are the signal’s model, its

kind of abstraction and priority.

Typical synonyms for Signal are Event or Action – and even an Operating System (OS)

Interrupt is some form of signal, only on a lower system level, closer to hardware. In CYBOI,

10.2 Functionality in Detail 323

a signal is simply a reference to a logic model, which may be either a composed algorithm,

or a primitive operation.

With the startup signal being placed in the signal memory, the system enters the check

procedure (checker module). On shutdown, the system runs through similar procedures

in opposite direction, only that then startup signal, memories and global variables are de-

stroyed.

10.2.3 Signal Checking

The check procedure consists of an endless loop continuously checking for signals residing

in signal memory. It provides the dynamics and – so to say – keeps the system alive. Of all

queued signals, the one with highest priority is retrieved first and forwarded to the handle

procedure (handler module).

This principle can be observed not only in operating-, but many other kinds of systems.

Servers run an endless loop waiting for (network) Client requests. Applications often use

signalling mechanisms provided by a framework, that handles keyboard press- or mouse click

signals stemming from a Graphical User Interface (GUI). However, as opposed to the event

handling of such frameworks which relies on bidirectional dependencies since child compo-

nents have to register as listener at their parent, a top-level signal checker loop forwards all

events in a unidirectional manner to interested system parts. It is worth noting that signals

may also be produced internally, as follow-ups, by other signals.

After having been processed, the signal gets removed from the signal memory. Once an exit

signal occurs, the shutdown flag is set, so that the signal checking loop can be left – and the

system be shutdown.

10.2.4 Signal Handling

Depending on the signal model’s kind of abstraction, two different signal handling procedures

may be called: handle compound or handle operation (both in the handler module). While

the former breaks down composed signals (algorithms) into basic operations, the latter

executes primitive signals (operations) directly, in form of low-level instructions, which may

go down to direct calls of the instruction set of the Central Processing Unit (CPU).

324 10 Cybernetics Oriented Interpreter

Actual knowledge model changes, in other words the application of well-defined Logic- to

State models, is done by primitive operations only.

10.2.5 Operation Execution

Each low-level operation has its own module, belonging to the Applicator part of CYBOI.

An addition operation is executed in the add module, a comparison operation in the compare

module, a creation operation in the create module, and so forth. Operations exist for several

purposes, some of which are listed, together with an example operation, following:

- program flow (loop)

- boolean logic (and)

- comparison (equals)

- arithmetics (add)

- service control (startup)

- memory management (create)

10.2.6 Model Transition

The creation of transient knowledge models (to be kept in memory, at runtime) from per-

sistent knowledge templates (given in form of CYBOL sources) is not a trivial thing. It is

a mechanism consisting of a cascade of model transitions, comparable to the Information

Processing Model of cognitive psychology (section 6.1.5). One may imagine this as a state

changing its appearance, while wandering through the system. The same mechanism is

applied when handling communication data (figure 10.3). Because CYBOI’s architecture

is easily extensible with various modules, such as import/ export (i/e) filters for different

kinds of communication, it may act as universal data converter. All corresponding modules

belong to the Memoriser part of CYBOI.

As opposed to the knowledge acquirement in Artificial Neural Networks (ANN), the knowl-

edge in CYBOP systems is not learned, but injected by reading from external knowledge

sources, which can be manipulated in a flexible manner any time. The difference to standard

applications is that these hard-wire their knowledge within the system.

10.2 Functionality in Detail 325

stream

structure

knowledge

data

input

data

output

receive parse decode encode serialise send

communicator

converter

translator

Figure 10.3: Input-to-Output Model Transition

A data input (i/p), after having been processed by a receive procedure (communicator

modules), results in a stream – a data array in memory. A parse procedure (converter

modules), depending on the kind of abstraction of the data, then builds a structure out of

this simple array. The structure, finally, passes a decode procedure (translator modules)

which creates a knowledge model.

Whenever an application running within CYBOI wants to send data, may it be to another

system or for making them persistent on a local Hard Disk Drive (HDD), translator, con-

verter and communicator have to be crossed in the opposite direction. Because a running

application system is a tree of knowledge models allocating space in memory, parts of that

tree can be serialised easily. It has to be mentioned, though, that slight changes of the

XML format are necessary to achieve this: The usual quotation marks used to delimit XML

attribute values have to be replaced with differing begin and end characters. This feature is

an open issue which the current version of CYBOI does not provide yet.

10.2.7 Data Creation

The functionality of CYBOI as system is built around the manipulation of states in memory.

The question how states, representing data, are stored is therefore of great importance.

Besides containers like the Internals Memory, Knowledge Memory and Signal Memory,

326 10 Cybernetics Oriented Interpreter

belonging to its infrastructure, CYBOI uses special structures encapsulating primitive data.

Not only types like Character, Integer, Float or String are wrapped this way, also Operations

are. Any compositions of these are stored as Compound.

Encapsulated primitives have the advantage of being forwardable as reference (memory

address pointer), instead of as copy. This ensures that redundant data are avoided and

states of manipulated primitives are not lost. Logic operations are stored in form of a string

indicating their name. Necessary references to input/ output (i/o) State models need to be

provided as meta information, by the compound model surrounding the operation.

The Compound, as most important CYBOI structure capable of representing state- as well

as logic knowledge, and capable of emulating a map, collection, list and tree, deserves closer

inspection. Essentially, it is a container able to recursively reference instances of its own,

thus spanning up a tree of parent nodes (Whole models) that may have child nodes (Part

models). In fulfillment of the requirements of the knowledge schema introduced in section

7.3, a compound consists of a combination of many arrays containing a part’s:

- Name: serving as unique Identifier (ID)

- Model: the actual contents (may be a part node)

- Abstraction: the kind of abstraction (type) of the model

- Details: further meta information (properties, constraints)

One may call the Compound a multi-dimensional container but it is probably easier de-

scribed as large table with many columns, whereby the values of one row describe exactly

one part model, and thus belong together.

The previously mentioned Knowledge Memory may be seen as huge tree consisting of

compound- as well as primitive models. Its root is always a Compound – it, so to say,

concentrates all knowledge in just one point, the single concepts being branches of it.

The essential procedures for managing data in memory are create and destroy (creator

modules). Three additional kinds of procedures are provided for compound- and other

container-like structures: set, get and remove (accessor modules). It should be noted at

this point that CYBOL applications have no direct access to these procedures, so that

wild memory allocation is not possible. A knowledge model can only be created using the

corresponding CYBOL operation create part.

10.3 Implementation 327

10.3 Implementation

This section describes some issues that arose during implementation, and how they are

addressed in CYBOI.

10.3.1 Simplified C

An early version of CYBOI was implemented in the Java programming language. Since, over

time, its functionality was reduced to pure system control, by moving application-specific

features to CYBOL, there was no longer a need for an Object Oriented Programming (OOP)

language, which Java is. The OOP overhead caused by concepts like Inheritance inevitably

results in lower performance, as compared to Structured and Procedural Programming (SPP)

languages. Low-level system programming, close to hardware, focuses on fast data process-

ing. OOP concepts would only disturb here. A later (the current) version of CYBOI was

therefore rewritten in the slimmer C programming language.

It would, of course, be possible to implement CYBOI in other languages, too. Candidates

could be C++ or the increasingly popular Python. Both are OOP languages having similar

dis-/advantages like Java. However, different CYBOI implementations are possible and as

long as the CYBOL format gets interpreted correctly, different languages, frameworks and

libraries can be used.

But also C (as other SPP languages) contains a number of unnecessary, redundant constructs

(section 4.1.6) for one and the same concept (like three kinds of looping, for example) that

deserve the name Syntactic Sugar for the Programmer. Some source code simplifications

have therefore been issued as implementation guideline, and applied to CYBOI:

- Use only procedures, not functions! (A return value is just another parameter. There

is no argument not to hand it over as such.)

- Use only call by reference, not call by value! (Handing over parameters as copy creates

redundant data. It is better to use references instead.)

- Use only if-else conditions, not case statements! (Branching via simple conditions

covers all necessary use cases.)

- Use only while endless loops, not do-while- or for loops! (Merging the loop concept

with a break condition is not a good idea. The condition can be put into the loop’s

body, in order to realise pre- or post-testing.)

328 10 Cybernetics Oriented Interpreter

10.3.2 Corrected C

Moreover, there is at least one incorrect implementation solution used in the C standard

libraries (libc) and various traditional systems. Arrays are all too often forwarded without

necessary meta information like their size and count of elements. But a pointer without

additional information about the size of the memory area (array) it points to is really

worthless. The introduction of Types with defined size makes array elements countable,

but does not solve the array size problem. A special workaround, to what concerns string

arrays at least, was therefore thought out. It requires that a null character (’\0’) be added

as termination to every character array which is to be interpreted as string.

But this is not a clean solution. For large systems, it pollutes a computer’s memory with

thousands and thousands of termination suffixes, to compensate for the missing size in-

formation. Recalling a recommendation on knowledge modelling given in chapter 7, meta

information is that about other information (like an array) and should thus not be stored

inside, but outside the same (array). A further implementation guideline made out and

considered in CYBOI, is therefore:

- Use (character) arrays only together with their size and count of elements, not as null-

terminated strings! (Array references accompanied by necessary meta information

make termination characters superfluous.)

10.3.3 Used Libraries

Before interpreting a stream of CYBOL data, a parser has to bring structure into it. Since

CYBOL bases on the XML standard, one option was to use one of the many existing XML

parser libraries [329, 209], for reading and writing CYBOL sources. The current CYBOI

version uses libxml2, the GNU Network Object Model Environment (GNOME) XML library,

written in C.

Existing libraries, however, bring with a lot of functionality, not all of which is actually

used in CYBOI. A future version will therefore contain its own parsing procedures, tailored

to CYBOI’s needs. Another argument therefor are special requirements (differing XML

attribute begin and end characters) when serialising knowledge models into CYBOL files.

Further libraries are needed. The X Window System (X) X Libraries (Xlibs), for example,

contain routines to use Graphical User Interfaces (GUI) under UNIX-like Operating Systems

10.3 Implementation 329

(OS); for a Windows OS, it would be the Graphics Device Interface (GDI). The UNIX

Socket’s pendant in the Windows world is the Windows Socket (WINSOCK), both serving

as communication mechanism. A Textual User Interface (TUI) for the UNIX console is

programmed differently than one for a Disk Operating System (DOS) shell. And so on.

Because of the steady changes in CYBOI’s source code, and not to let this work’s volume

exceed the worst expectations, these shall not be elaborated on here.

10.3.4 Development Environment

Current CYBOI development happens under the Linux OS, using the C Compiler of the

GNUCompiler Collection (gcc) [309]. CYBOI’s code base has been kept simple and follow-

ing the C Standard [156] of the American National Standards Institute (ANSI), which is

why it should be compilable on other platforms, too. Exceptions to be considered are the

above-mentioned, platform-dependent libraries with differences between UNIX or derivates,

Windows-, and other OS. As temporary workaround, the CYGWIN runtime environment

[257] is used for running CYBOI under Windows.

The most important development tool is a simple text editor; it is used for writing program

code. Compilation is started on a console or shell. Likewise, the compiled binary is run

there, for testing purposes and error debugging.

10.3.5 Error Handling

One possibility to systematise errors frequently appearing during software development, is

to distinguish between three kinds: Syntax, Logical and Runtime.

In typed programming languages like C – the language CYBOI is written in – Syntax Errors

can be found by a compiler. Not so in CYBOL. It is a language whose models get interpreted

at runtime, according to the abstraction assigned to each of them. This is comparable to

scripting languages like Python 4.1.8 which do not request a type for variable declaration.

Compilation of CYBOL files is therefore not needed and model abstractions (types) are not

and cannot be checked before running a system. However, since CYBOL is based on XML,

at least its correct XML syntax can be validated before execution.

Logical Errors are mostly more difficult to find than syntax errors. They may be a wrong

initialisation, a false statement, a loop count mistake or comparable errors. They can better

330 10 Cybernetics Oriented Interpreter

be found in a running system, using a tool called Debugger that allows to check variable

values at runtime. Although a special CYBOI debugger does not exist yet, it may not be

too difficult to write one. CYBOI is slim; its transient models in memory are managed

from one place (knowledge memory root); its signals are processed by just one single loop.

A debugger would not have to jump through the actual application code, it could rely on

the few containers and loop in CYBOI, and nevertheless show application model values at

runtime.

Predictable Runtime Errors like crossing the limit of a number space, resulting from false

user input, or similarly foreseeable activities can be notified to a user via an error message

– on console, in a log file, or by popping up a graphical dialogue. Unpredictable runtime

errors are tricky and quite hard to find. The longer CYBOI is used, the better it will be

tested and the less likely will unpredictable runtime errors caused by wrong code occur.

10.3.6 Distribution and Installation

The current version of CYBOI, as well as already existing CYBOL applications, are dis-

tributed in form of Debian GNU/Linux Packages (DEB). Future versions may be provided

in RPM/ Red Hat Package Manager (RPM) format as well. Also, installation files for other

OS like Windows might be available then.

One question that had to be answered was where to put the CYBOI binary, but also CY-

BOL application files in UNIX Filesystem Hierarchy Standard (FHS) [278] directories. The

/usr/bin directory for CYBOI is obvious. CYBOL files, on the other hand, are the source

+ executable + configuration of an application, at the same time, all in one. A mailing list

discussion [12, June 2005] finally suggested a practicable way, namely to put all CYBOL

applications to the /usr/share/ directory.

11 Res Medicinae

No Road can ever be too long,

side-by-side with a good Friend.

Unknown Author

The first two chapters (9 and 10) of part III of this work defined the CYBOL language and

its corresponding interpreter CYBOI. Since a theory is worth more if it can be proven in

practice, this chapter will describe an effort trying to apply both to create an application

system named Res Medicinae [266] (Latin for Matter of Medicine).

11.1 Project

The – somewhat idealistic – aim was initially to create the prototype of a Hospital Infor-

mation System (HIS). Due to the clearly too high-set aims, this was later revised so that

the focus of the prototype became a standard Practice Management System (PMS) with an

Electronic Health Record (EHR) as its core. Several technology changes during the progress

of this work and the lack in time required to also revise this aim, so that now the final

prototype consists of just the (rudimentary) address management module of the planned

EHR application. It is written in CYBOL and executable by CYBOI.

The following sections describe the project background of Res Medicinae.

11.1.1 Free and Open Source Software

Just like CYBOP (including CYBOL and CYBOI) [256], Res Medicinae [266] is developed

within a Free/ Libre Open Source Software (FLOSS) project. Its source code, resources and

332 11 Res Medicinae

documentation are placed under GNU’s General Public License (GPL) (section 14.10.1) and

Free Documentation License (FDL) (section 14.10.2), respectively. That means they can be

freely redistributed and modified under the terms of these licences. Although distributed in

the hope that they will be useful, the program and its resources come without any warranty,

without even the implied warranty of merchantability or fitness for a particular purpose.

See [104] for details.

More information on Open Source Software (OSS) in general can be found at [242]. There

are plenty of resources for further background reading, a German one being the Open Source

Jahrbuch 2004 [110]. To what concerns FLOSS in the medical arena, many other projects

exist. Comprehensive lists of these can be found at [296, 321, 8].

11.1.2 Portals and Services

As OSS became popular over the years, the number of its supporters rose. It is not long time

that Sourceforge [217], the first Development Portal for FLOSS, was opened. Shortly after,

others like Freshmeat [216] followed and meanwhile, there are also national initiatives like

BerliOS [90] in Germany. Also the Free Software Foundation (FSF) offers an own portal

called Savannah [95], hosting exclusively free [149] software projects. Figure 11.1 shows the

four portals by their name, logo and Uniform Resource Locator (URL).

http://developer.berlios.de

http://sourceforge.net
http://freshmeat.net

http://savannah.gnu.org

Figure 11.1: FLOSS Development Portals

11.1 Project 333

As BerliOS states in its slogan, it is the aim of development portals of that kind to foster

open source development. In Savannah’s words, they are central points for the development,

distribution and maintenance of FLOSS. Although very often supported by well-known

sponsors, most portals are and want to stay independent. Using them, OSS projects and

their developers are offered several free services (figure 11.2). Since not all of these are

always useful, projects can configure their portal sites as needed.

summary, title, status, licence, language

homepage, web site space

mailing list server

forum, news server

concurrent versions system (cvs)

bug tracker, feature requests

patches, sourcecode solutions

documentation, manual, faq

tasks, project management

support, help
Figure 11.2: Portal Services

Res Medicinae was one of the first OSS projects registered at Sourceforge (number 4237 of

now more than 100,000). CYBOP (CYBOL, CYBOI) is hosted at BerliOS.

11.1.3 Tools

Classical application development relies on tools like a UML Designer, for creating Unified

Modeling Language (UML) diagrams, a Text Editor, Compiler and Debugger. Nowadays,

these and other tools are offered in one package, as Integrated Development Environment

(IDE).

Because the CYBOI interpreter is written in the system programming language C, its de-

velopment requires a compiler. CYBOL applications, on the other hand, do not have to be

compiled. They base on interpreted XML code which can be written in every text editor;

nothing else is needed. An adapted editor was proposed in section 9.5.1.

334 11 Res Medicinae

Res Medicinae development could certainly be speeded up by using graphical diagrams in

the style of the UML. But unfortunately, design tools that directly support CYBOP do not

exist yet. As section 9.5.2 tried to show, some UML diagrams could be used with only

minor adaptations for CYBOL modelling. For the time being, standard XML editors have

to suffice.

For running and testing CYBOL applications, of course, the CYBOI interpreter is needed.

11.1.4 Contributors

OSS projects are not only Hobby Activities any longer. Many of them have long overtaken

their commercial competitors, in functionality, stability, security and popularity. Due to

the participation of sometimes hundreds of enthusiasts, they mostly have much greater

momentum.

In the case of Res Medicinae, a number of Medical Doctors (MD) and Software Engineers

have contributed with their work or expressed serious interest in collaboration. Many In-

formatics Students were (and are) involved and completed their diploma (master) works on

a topic within the project. Finally, there are the OSS projects that follow similar aims, like:

- GNUmed [131]

- Open Source Clinical Application Resource (OSCAR) [263]

- Care2002 (Care2x) [190]

- Torch [61]

- Open Infrastructure for Outcomes (OIO) [136]

- Veterans Health Information Systems and Technology Architecture (VistA) [328]

- OpenEMed [94]

- Tcl/Tk Family Practice (tkFP) [22]

- Debian-Med [259], as meta project for packaging

All of them want to provide software solutions for medicine. Being friendly concurrents,

they use mailing lists such as [168] to exchange latest insights, offer help to each other and

work towards a better integration. The technological decisions that have originally caused

a division of forces and a multitude of projects to exist, may in the end turn out to be

fruitful, with focus on the interoperability of systems. Additionally, organisations like the

11.2 Analysis 335

Open Source Health Care Alliance (OSHCA) [241] bundle the projects’ forces and regularly

organise conferences.

11.2 Analysis

Abiding by the standard Software Engineering Process (SEP) (chapter 2), a Requirements

Analysis stood as first activity for the development of Res Medicinae. The following sections

will give a brief overview of some requirements and current modelling trends, concerning the

Electronic Health Record (EHR). They do not try to replace more comprehensive works

written on the subject.

11.2.1 Requirements Document

With the help of German medical doctors, a Requirements Document [135] was created and

is meanwhile being updated and extended since about five years. It basically describes an

EHR and the information it should include.

Since the document itself is just a hierarchical model consisting of parts, it can well be

represented in CYBOL. Unfortunately, a document processor that can read and render

CYBOL, in the style of LaTeX [188], has not been written to date (although CYBOI might

integrate this functionality one day). It was therefore decided to write the requirements

document in SGML/ XML, using the DocBook DTD [336] and tools described in The Linux

Documentation Project (TLDP) [197].

11.2.2 EHR & Co.

Besides the now quite common term Electronic Health Record (EHR), some publications,

experts or companies also talk of [207, 333]:

- Personal Health Record (PHR)

- Virtual Health Record (VHR)

- Virtual Patient Record (VPR)

- Electronic Medical Record (EMR)

- Electronic Patient Record (EPR)

336 11 Res Medicinae

- Computer-based Patient Record (CPR)

- Computerised Patient Record (CPR)

- Computerised Medical Record (CMR)

- Automated Medical Record (AMR)

- Digital Medical Record (DMR)

- Patient Carried Record (PCR)

- Patient Medical Record (PMR)

- Integrated Care Record (ICR)

- Electronic Medical Infrastructure (EMI)

- Lifetime Data Repository (LDR)

and state differences in their contents, access, maintainer, place of storage, technology or

other aspects. David Kibbe, for example, as cited by Jennifer Bush [42], says:

There’s recently been a subtle shift in terminology. EMR connotes a tool that’s

for doctors only and something that replaces the paper record with a database.

EHR connotes more of a connectivity tool that not only includes the patient

and may even be used by the patient, but also provides a set of tools to improve

work-flow efficiency and quality of care in doctors’ offices.

. . . An EHR should include a detailed clinical documentation function; prescrip-

tion ordering and management capabilities; a secure messaging system; lab and

test result reporting functions; evidence-based health guidelines; secure patient

access to health records; a public health reporting- and tracking system; map-

ping to clinical- and standard code sets and the ability to interface with leading

practice management software.

In essence, however, most of the above-listed terms are considered synonymous, since their

definitions, if existent at all, differ just in nuances. Charlene Marietti, who investigated in

this subject, writes [207]:

Meanwhile, most practical people don’t see a big difference between the CPR

and the EMR and the many other terms that exist.

Therefore, this work further on sticks to the term EHR and wants it understood as general

description for either of the other terms mentioned above.

11.2 Analysis 337

11.2.3 Episode Based

Historically, it took a long time until the concept of a modern EHR crystalised out. An

early form of a time-oriented medical record stems from Hippocrates (5th century BC) who

wanted to accurately reflect the course of a disease and indicate its possible causes. In 1907,

the Mayo Clinic (formed by the American surgeon William Mayo) adopted one separate file

for each patient, to be able to obtain a better overview of his complete disease history. This

innovation was the origin of the Patient Centered Medical Record as known today, as [322]

means.

The discussion on how to model an ideal EHR already lasts for decades and has not finished.

Recent proposals brought in some new perspectives and ideas. One of them turns around the

so-called Episode-based EHR [341]. In the centre of these considerations stands a structure

that is described in a more pragmatic way by Karsten Hilbert of GNUmed [131]. He sees a

complex EHR as hierarchical composition of the following items:

- Health Issue

- Clinical Episode

- Clinical Encounter

- Clinical Item

The additional concept of a Partial Contact as known from the Dutch Episode Model does

not integrate into this hierarchy. But after Hilbert, Partial Contacts could be easily derived

from existing EHR data by aggregating all Clinical Items that belong to the same Clinical

Encounter and the same Clinical Episode.

Clinical Items are typically elements in the SOAP format of progress notes, as known from

the Problem Oriented Medical Record (POMR) [339] that was introduced by Lawrence L.

Weed in the 1960s. SOAP stands for:

- Subjective: Complaints as phrased by the patient

- Objective: Findings of physicians and nurses

- Assessment: Test results and conclusions, such as a diagnosis

- Plan: Medical plan, for example treatment or policy

338 11 Res Medicinae

11.2.4 Evidence Based

In an email to the Open Health Mailing List [168], David R. raised a number of unsolved

issues concerning the Evidence-based EHR. In a first thought, he exposes the existence of

two distinct views on an EHR: clinical and evidential. A medical record were not just

a collection of clinical information, but also a Legal Document with financial importance.

It were to give evidence of the healthcare services rendered by a particular provider for

a particular organisation, and the reason why, mostly, patients do not own the record.

Finally, an EHR were the result of the intersection of two major business processes: the

Clinical Process and the Records Management Process.

This observation leads to the second important question whether records should be accessed

remotely, leaving them in place at each of the organisations where the patient has been seen,

or be incorporated as extract or full copy to each organisation’s repository, as known from

the paper-based world. Since the first method, promoted as trans-organisational Virtual

Record, did not address an organisation’s need for maintaining its evidential records, it had,

in the opinion of David R., failed to gain widespread or long-term acceptance.

A third point turns around the authoring of an EHR. Record keeping were no longer simply

a personal activity but rather an inter-personal action. David R. writes on:

Historically, providers have viewed the medical records they have created as

though they were a personal journal kept by the provider to facilitate his or

her process of delivering care to an individual patient. It was viewed as an aid

to memory and extended the provider’s thought across time. . . . In the setting

of a highly mobile population of patients and providers, the record becomes

a living document with multiple authors. Multiple individuals for multiple

reasons consult it and . . . it is in this record that a shared understanding of the

(health) problems and recommended solutions for . . . the individual occur.

Because the EHR could be seen as a space for collaboration, applications working with it

had to support clinical process Workflow requirements. A new set of demands were also

placed on health care providers, to document their activities with patients in a way that is

mutually intelligible to those who have a stake in the information contained in the record.

11.2 Analysis 339

11.2.5 Continuity of Care

A main result of the opinion stated in the previous section was the realisation that a major

challenge for EHR design will be to overcome the difference between an organisation’s evi-

dential record management process with emphasis on legal/ financial aspects and the record

keeping as medical/ health documentation, that an individual would do.

This is exactly the issue that Philippe Ameline and his French colleagues address in their

Nautilus/ Odyssee project [215]. It distinguishes between three levels of data:

- Individual : personal, various local

- Group: professional, 24 hour availability

- Collective: dedicated to continuity of care

The latter is called Personal Health Project (PHP). Its health management data can be

shared between a Patient and his Care Team, with the EHR passing by institutions. Ameline

writes in [19] that the management of these two referentials – health professional and patient

– meant that applications now had to handle differently the history data with a time duration

(which may get changed by someone else) and the data of the instantaneous picture kind

(what one noticed and reported at a given time).

A similar effort with U.S. American roots is called Continuity of Care Record (CCR) [93].

Just like the PHP, it does not want to be a complete EHR, but rather: organise and

make transportable a set of basic patient information consisting of the most relevant and

timely facts about a patient’s condition. Through specified XML code, the CCR becomes

interoperable.

11.2.6 Core Model

Many kinds of application modules are needed in a healthcare-specific Information Tech-

nology (IT) environment. The tasks they fulfill, together with a proposed name within the

Res Medicinae project, are listed following:

- Revue: Portal for module starting

- Residenz: Administrative data management

- Record: Clinical documentation

340 11 Res Medicinae

- Rezept: Prescription ordering and management

- Reform: Form printing

- Report: Public health reporting and tracking

- Reagenz: Laboratory- and test result retrieval

- Rendezvous: Scheduling

- Roentgen: Clinical imaging

- Rechnung: Billing

- Richtig: Statistics

- Register: Pharmaceutical reference

- Ratlos: Lexicon-, terminology- and code set query

http://www.resmedicinae.org

Res Medicinae

electronic

health

record

ResAdmin

Record

Reagenz

Roentgen

Rechnung

Reform

Figure 11.3: Applications Grouped around an Electronic Health Record Core

Figure 11.3 shows some of these modules, together with an EHR as their central data

structure.

11.3 Standards 341

11.3 Standards

In a further thought, current standards of medical informatics had to be considered for the

development of Res Medicinae application modules. There exists a whole plethora of (partly

de facto) standards – far too many to discuss here. The following sections will give a brief

overview of only a few standards which are potentially important for EHR development.

11.3.1 Overview

Figure 11.4 shows the medical informatics working groups of important standardisation

organisations, namely the:

- Deutsches Institut fuer Normung (DIN)

- Comite Europeen de Normalisation (CEN)

- International Organization for Standardization (ISO)

ISO/ TC215

Health Informatics

WG1

Health Records and

Modelling Coordination

DIN NAMed FB G

Medizinische Informatik

CEN/ TC251

Health Informatics

WG2

Messaging and

Communication

WG3

Health Concept

Representation

WG4

Security

WG5

Health Cards

WG I

Information Models

WG IV

Technology for

Interoperability

WG II

Terminology and

Knowledge Bases

WG III

Security, Safety and Quality

Task Force

Cards

AA G 1

Modellierung

AA G 2

Kommunikation

AA G 3

Terminologie

AA G 4

Sicherheit

AA G 5

Karten

Figure 11.4: Medical Informatics Working Groups of DIN/ CEN/ ISO [283]

The structure of the following sections is chosen after this systematics. Standards for Health

Record Modelling will be described first, followed by those for Messaging and Communica-

tion and a section on Terminology- and Coding Systems. Imaging-, Health Card- and further

342 11 Res Medicinae

standards are mentioned afterwards. General remarks on current Standards Development

Processes follow. Reflections on the Implications of standards on the development of Res

Medicinae will conclude the topic.

11.3.2 Record Modelling

CEN/TC251

The European Committee for Standardization (CEN) as association of national Standards

Development Organisations (SDO) is working on technical specifications for an Electronic

Health Record (EHR). The Technical Committee (TC) dealing with that task and medical

informatics in general carries the name TC251 [50].

While its pre-standard ENV 12265, defined in 1995, focused on the EHR Architecture, the

successor pre-standard ENV 13606, published in 1999, placed more emphasis on Communi-

cation. Among other things, it defined a set of reusable components (compositions) called

General Purpose Information Component (GPIC) [208]. The ENV 13606 pre-standard

consisted of four parts:

1. Extended Architecture

2. Domain Termlist

3. Distribution Rules

4. Messages for the Exchange of Information

A third effort, the EHR Communications (EHRcom) task force, set up in December 2001,

is to refine ENV 13606 and to propose a revision that could be adopted by CEN as formal

standard (EN), during 2004. Its current activities, as described in [76], happen in five areas:

1. Reference Model: generic information model for EHR communication

2. Archetype Interchange Specification: generic language for EHR representation and

communication

3. Reference Archetypes and Term Lists: range of templates reflecting clinical require-

ments and settings

4. Security Features: concepts to enable interaction with security components

11.3 Standards 343

5. Exchange Models: set of models that can form the basis of message-based or service-

based communication

EHRcom places special focus on the Harmonisation of different standardisation efforts [169]

like CEN’s GPIC s, openEHR’s Archetypes or HL7’s CDA, described in a later section.

But this is not an easy task. Bert Verhees, for example, reports [19] about name clashes

between the reserved words of many programming languages and HL7 data types (Set,

Array) which made it impossible to use the standard as is and necessitated a renaming of

those types (into something like HL7Set and HL7Array). In his opinion, a standard should

be platform independent (operating system- and programming language wise). Thomas

Beale of openEHR writes to this topic [19]:

. . . almost all the issues . . . are actually due to the HL7 data types, which

CEN unfortunately decided to adopt/ adapt a long time ago. Tom Marley and

others have struggled to find a version of them which a) remains faithful to the

idea of HL7 but b) fixes some problems, like strange inheritance. Personally,

. . . I don’t find the HL7 data types a good design at all . . . and have made

available the reasons in various standards discussions, along with many others

who have pointed out the same problems. The result of this recently has been

. . . a new ISO work item called Data Types for Clinical Informatics . . . which

will recognise three layers:

1. Inbuilt types (like in ISO 11404)

2. General purpose clinical types (specified from requirements)

3. Bindings to particular model systems (such as HL7)

Open EHR

The Open Electronic Health Record (openEHR) [22] initiative, previously called the Good

European/ Electronic Health Record (GEHR), arose from a European standardisation effort

but is now based in Australia.

Pursueing an idea named the Dual Model Approach (section 4.6.9), which uses a Meta-Level

Architecture as described by the Reflection pattern (section 4.2.1), it wants to specify so-

called Archetypes – formally specified knowledge templates of requirements for representing

and communicating EHR information.

The effort is based on the idea of no-cost open standards and free contribution.

344 11 Res Medicinae

11.3.3 Messaging and Communication

Health Level Seven

Health Level Seven (HL7), as it describes itself [150], is: a not-for-profit, ANSI-accredited

standards developing organization dedicated to providing a comprehensive framework and

related standards for the exchange, integration, sharing, and retrieval of electronic health

information that supports clinical practice and the management, delivery and evaluation of

health services. The more than 2000 individuals representing over 500 corporate members,

world-wide, do for a great part belong to healthcare industry, implementing its interests.

Accordingly, HL7’s endeavors are sponsored, in part, by that industry. Its name Level Seven,

after [276], refers to the highest level of the ISO OSI communication model (section 3.11).

Besides the mentioned framework called Reference Information Model (RIM), the organi-

sation worked out a number of specifications for the exchange of messages and documents,

newer formats being the Clinical Document Architecture (CDA), an XML-only specification,

and the Common Message Element Type (CMET) [208], a reusable component.

Thomas Beale criticised in [168], that CDA did not have very strong semantics for some of its

detailed parts, since they were derived from XHTML, and that it tended to mix presentation

and representation concerns somewhat. Furthermore, CDA had recently incorporated some

RIM classes into its content level, via the creation of a Refined Message Information Model

(RMIM) which were a pity, because it reduced its genericness and made it dependend on

the RIM, which were essentially an analysis pattern of domain relationships, not a model of

recording.

Instead, as Beale writes in a later message to [168], they (HL7) might start thinking about

generic solutions, which incorporate clinical models, separated from their XML schemas, for

a start. . . . Single level XML approaches didn’t have much long term future in his opinion,

because they didn’t properly separate clinical models from information representation, which

were required to allow compositional clinical models and specialisable clinical models to be

built independently from the software.

HL7’s recommendations found partly application in a greater number of Hospital Informa-

tion Systems (HIS), but rarely in smaller or medium-sized Practice Management Systems

(PMS).

11.3 Standards 345

Healthcare Domain Task Force

The Object Management Group (OMG) whose mission is: to help computer users solve

integration problems by supplying open, vendor-neutral interoperability specifications, is the

creator of widely-used de facto standards (section 4.4.6) like UML, MOF, XMI, CWM or

CORBA, all now belonging to the Model Driven Architecture (MDA).

Published in the 1990s, the Common Object Request Broker Architecture (CORBA) was one

of the first standards specifications created by the OMG. It tried to separate interfaces of

programming objects (components) from their implementation, to improve communication

between programs, independent of which programming language, operating system, com-

puter architecture or network were used. The specification includes the neutral Interface

Definition Language (IDL), the Object Request Broker (ORB) middleware functionality and

a corresponding Internet Inter ORB Protocol (IIOP).

CORBA has been adopted by many applications, and been adapted for many domains, one

of them being Healthcare. The OMG working group dealing with that field is the Healthcare

Domain Taskforce (HDTF) [237] (formerly called CORBAmed). It defined IDL interfaces

for a number of different healthcare services, for example:

- Person (Patient) Identification Service (PIDS)

- Lexicon (Terminology) Query Service (LQS)

- Clinical Observations Access Service (COAS)

- Resource Access Decision Service (RADS)

- Clinical Image Access Service (CIAS)

HDTF specifications are helpful in that they standardise certain functionality calls that all

systems implementing the corresponding interfaces may rely on. However, they do not make

any assertions about how medical knowledge should be structured.

EDIFACT

The Electronic Data Interchange for Administration, Commerce and Transport (EDIFACT)

[318] is a standard maintained by committees of the United Nations (UN). It was defined to

ease the electronic exchange of general business data, but is widely used for the transmission

of healthcare information between organisations, too. [170]

346 11 Res Medicinae

The European Board of EDI Standardisation (EBES) participates in the development and

distribution of EDIFACT standards. For the healthcare sector, this task falls to the EBES

Expert Group (EEG) 9. It has specified many message formats, for instance for referral

letters or electronic prescriptions. Although some countries like Denmark, Norway or Austria

make use of these standards, they have not gained wider currency. [283]

Messages in form of the EDIFACT protocol are based on syntax elements which are described

in another standard, the ISO 9735. Their data elements are contained in a well-defined

collection of segments, in a well-defined sequence. [314]

x Data Carrier

Various national standards for medical software exist. In Germany, a widely used de facto

standard for EDI in healthcare is the x Datenträger (xDT) [172], a family of formats speci-

fying data packets. The German word Datenträger (DT) means something like Data Con-

tainer. The German College of Community Physicians, called Kassenärztliche Bundesvere-

inigung (KBV), is initiator and maintainer of xDT, to which belong, for example:

- Behandlungs DT (BDT): EHR interchange between systems (was ADT and developed

to the current BDT)

- Labor DT (LDT): laboratory data format (predecessor: Bonner Modell)

- Abrechnungs DT (ADT): reimbursement data format

- Ambulant Operieren DT (AODT): outpatient/ minor surgery data format

- Geräte DT (GDT): medical device interfacing (predecessor: Münchener Protokoll)

- Kommunikations DT (KDT): communications data format (referrral letters)

- Kassenärztliche Vereinigung DT (KVDT): all sorts of reimbursement data (container

format to wrap the others)

After Karsten Hilbert [168], xDT were mostly used in Practice Management Systems (PMS)

of General Practitioners (GP). Most Hospital Information Systems (HIS) weren’t using it.

Some lab software being part of a HIS and servicing PMS apparently would use it.

Besides the KBV, institutions and groups like HL7, KV Nordrhein, Zentralinstitut für

die Kassenärztliche Versorgung (ZI), Deutsches Institut für Medizinische Dokumentation

und Information (DIMDI), Bundesvereinigung Deutscher Apotheker Verbände (ABDA),

Verband der Hersteller von IT Lösungen für das Gesundheitswesen (VHitG), Verband

11.3 Standards 347

Deutscher Arztpraxis Softwarehersteller (VDAP) and Qualitätsring Medizinische Software

(QMS) are currently working on converting xDT into an XML-based standard, called Stan-

dardisation of Communication between Information Systems in Physician’s Offices and Hos-

pitals using XML (SCIPHOX) [80], which originates in HL7’s CDA. Accompanying projects

[301] include the Robert Koch Institut (RKI), Studienzentrum Göttingen (Allgemeinmedi-

zin) and others, as further partners.

Healthcare Xchange Protocol

Finally, there are standardisation activities in the Open Source Software (OSS) community.

Just recently, the Healthcare Xchange Protocol (HXP) [269] was defined by a number of

projects.

HXP is a data exchange protocol to be used by healthcare applications to communicate

transparently with each other, regardless of their corresponding platform. The aim is to

make data exchange simple to implement, easy to understand, flexible, reliable, secure, free,

and more. HXP is based upon the XML Remote Procedure Call (RPC) open standards

specifications, that is it uses messages in XML format for communication.

The specification and all documentation are open and everybody can contribute ideas.

11.3.4 Terminology Systems

Besides defining the differences between a Lexicon (list of pure words) and Terminology (also

containing phrases), the latter sometimes called Vocabulary, section 4.6.5 introduced tree-

like Hierarchies as one way to organise such sets of words or terms. Three concrete schemes

for organising terminologies were described in section 4.6.6: Enumerative, Compositional

and Lexical. Controversial opinions about terminologies exist. Thomas Beale wrote in [168,

December 2003]:

. . . trying to standardise the whole of medicine . . . is a fruitless enterprise.

Sam Heard has said this many times in presentations in Australia, and when

he first started saying it, was amazed not to be stoned publicly; in fact many

people have come to this conclusion through their own hard work, but aren’t

comfortable with saying it, since it goes against current orthodoxy (embodied

in things like SNOMED CT).

348 11 Res Medicinae

Nevertheless, terminologies are a topic of research and sometimes used in practice, as the

example of ICD (see below) shows. This section therefore briefly describes some medical

terminologies and, by referring to Jeremy Rogers [276], tries to assign them to one of the

before-mentioned schemes.

ICD

The International Classification of Diseases (ICD): has become the international standard

diagnostic classification for all general epidemiological and many health management pur-

poses . . . It is used to classify diseases and other health problems recorded on many types

of health and vital records including death certificates and hospital records. [342]

Scheme: enumerative

Maintainer: World Health Organisation (WHO)

OPCS

The Office of Population Censuses and Surveys Classification of Surgical Operations and

Procedures (OPCS) is a: statistical classification of diseases and surgical procedures, re-

spectively. It allows the: logical translation of clinical statements into codes in a way that

facilitates the retrieval of data in a consistent manner and comparative analysis of aggre-

gated datasets compiled from multiple sources. [219]

Scheme: enumerative

Maintainer: National Health Service Information Authority (NHSIA)

READ

The Read Codes (READ), as their older name Clinical Terms Version 3 (CTV3) says, are

a: list of terms describing the care and treatment of patients. They: cover a wide range of

topics in categories such as signs and symptoms, treatments and therapies, investigations,

occupations, diagnoses and drugs and appliances. Further, they: provide cross maps to both

ICD-10 and OPCS-4 classification codes. [220]

Scheme: enumerative

Maintainer: United Kingdom (UK) National Health Service Information Authority (NHSIA)

11.3 Standards 349

LOINC

The Logical Observation Identifiers, Names and Codes (LOINC) is a database whose pur-

pose is: to facilitate the exchange and pooling of results . . . for clinical care, outcomes

management, and research. Its codes are: universal identifiers for laboratory- and other

clinical observations. [157] After [276], it were now closely allied to SNOMED CT (see later

section).

Scheme: hybrid enumerative-compositional

Maintainer: United States (US) Regenstrief Institute

ICNP

The International Classification for Nursing Practice (ICNP) is a: combinatorial terminol-

ogy for nursing practice that facilitates crossmapping of local terms and existing vocabularies

and classifications. It wants to: establish a common language for describing nursing practice

in order to improve communication among nurses, and between nurses and others. [229]

Scheme: hybrid enumerative-compositional

Maintainer: International Council of Nurses (ICN)

SNOMED CT

The Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (SNOMED CT)

is: a dynamic, scientifically validated clinical health care terminology and infrastructure

that makes health care knowledge more usable and accessible. The SNOMED CT core

terminology: contains over 364,400 health care concepts with unique meanings and formal

logic-based definitions organized into hierarchies. As of January 2005, the fully populated

table with unique descriptions for each concept contains more than 984,000 descriptions.

Approximately 1.45 million semantic relationships exist to enable reliability and consistency

of data retrieval. [158]

SNOMED CT was created by combining the content and structure of the SNOMED Refer-

ence Terminology (SNOMED RT) with the United Kingdom’s (UK) Read Codes (READ)

350 11 Res Medicinae

clinical terms. Meanwhile, mappings and integrations for further standards exist, e.g. for

several ICD versions (ICD-9-CM, ICD-10, ICD-O3), OPCS-4 and LOINC.

Scheme: hybrid enumerative-compositional

Maintainer: SNOMED International and College of American Pathologists (CAP)

Odyssee

The Odyssee open source project [215] contains a terminology (Lexique) of more than 35,000

(French) terms, each with a code, at the core of its system. Additionally, it contains a

Semantic Network of links between terms of the Lexique, to give sense. Links can be is a,

belongs to or has unit. Philippe Ameline writes [19]:

In Odyssee, we describe all that we can with trees. If we compare the Lexique

with medical vocabulary, trees are sentences made of its words. Each node of

a tree is an object with fields like the Lexique’s code, complement (to store

numbers or external codes), degree of evidence (from 0=no to 100=certain).

Trees can also contain free text sentences . . .

In Odyssee, each and every structured document is a tree; you just have to

look at the Lexique term at its root to know what it is. The whole patient

record can even be seen as a huge tree with (the) term Patient as root. Trees

can be shown as is or, for report generation, be translated to natural langage

sentences.

Scheme: compositional

Maintainer: Odyssee Non-Profit Organisation (NPO), Logiciel Nautilus

OpenGALEN

The Generalised Architecture for Languages, Encyclopaedias and Nomenclatures in Medicine

(GALEN) is trying to construct a: semantically sound model of clinical terminology – the

GALEN Common Reference Model (CRM). The formal rules (representation scheme) for

manipulating its concepts are provided by the GALEN Representation and Integration Lan-

guage (GRAIL).

The original GALEN project was sponsored by the European Union (EU) and open-sourced

and renamed into OpenGALEN, in 1999. It later continued as part of the Synergy on the Ex-

11.3 Standards 351

tranet (SynEx) project [59], which arose from the Synapses project aiming at implementing

a federated healthcare record server.

Scheme: compositional

Maintainer: OpenGALEN Non-Profit Organisation (NPO)

UMLS

The Unified Medical Language System (UMLS) consists of knowledge sources (databases)

and associated software tools (programs). By design, the knowledge sources are multi-

purpose, that is: they are not optimised for particular applications, but can be applied in

systems that perform a range of functions involving one or more types of information, e.g.

patient records, scientific literature, guidelines, public health data. [228] There are three

UMLS knowledge sources:

- Metathesaurus: a very large, multi-purpose, and multi-lingual vocabulary database

containing information about biomedical and health-related concepts, their various

names, and the relationships among them; its source vocabularies are many different

thesauri, classifications, code sets, and lists of controlled terms, of which it cross-

references over 79 [276], often by deriving from lexical analysis of the terms; a core

thesaurus are the Medical Subject Headings (MeSH)

- Semantic Network: a consistent categorisation of all concepts represented in the

UMLS Metathesaurus (currently 135 semantic types) and a set of useful relationships

between these (currently 54 semantic links)

- Specialist Lexicon: a general English lexicon that includes many biomedical terms;

records the syntactic, morphological, and orthographic information for each word or

term

To its associated software belongs the UMLS Knowledge Source Server (UMLSKS), which

is: a set of Web-based interactive tools and a programmer interface to allow users and

developers access to the UMLS knowledge sources, including the vocabularies within the

Metathesaurus. [228]

Scheme: lexical

Maintainer: United States (US) National Library of Medicine (NLM)

352 11 Res Medicinae

Others

Numerous other terminology systems exist, only some of which are listed below:

- Oxford Medical Information System (OXMIS) Dictionary

- International Classification of Health Problems in Primary Care (ICHPPC)

- International Classification of Primary Care (ICPC)

- International Classification of Functioning, Disability and Health (ICF)

- Universal Medical Device Nomenclature System (UMDNS)

11.3.5 Further Standards

As wide as the field of medicine – and therewith medical informatics – is the number of

further standards that could be considered. Understandably, only a few more examples can

be mentioned here.

DICOM

Digital Imaging and Communications in Medicine (DICOM) is a: multi-part standard pro-

duced to facilitate the interchange of information between digital imaging computer systems

in medical environments. [230] Medical devices like Computer Tomographs (CT), manu-

factured by various vendors, produce a variety of digital image formats, which explains the

need to standardise their transfer.

DICOM not only defines its own file format containing meta data and the actual image data

(in compressed or uncompressed form), but also a transport protocol called DICOM Message

Service Element (DIMSE), which is based on the Transfer Control Protocol (TCP). Just like

the Simple Object Access Protocol (SOAP), DICOM uses the Service Oriented Architecture

(SOA) – a simple principle describing a service as Remote Procedure Call (RPC). [177]

Maintainer: American College of Radiology (ACR), National Electrical Manufacturers As-

sociation (NEMA)

11.3 Standards 353

GMDN

Global Medical Device Nomenclature (GMDN) is a: collection of internationally recognised

terms used to accurately describe and catalogue medical devices . . . in particular, the prod-

ucts used in the diagnosis, prevention, monitoring, treatment or alleviation of disease or

injury in humans. It is divided into 12 categories of devices and contains nearly 7,000 terms

plus more than 10,000 synonyms to make the GMDN easier to use. [206]

Maintainer: Maintenance Agency Policy Group (MAPG)

NCPDP

Various electronic standards for the transmission of pharmacy data exist. They cover areas

such as the: identification of drugs and health related products, the: adoption of standard

identifiers for pharmaceutical data transactions, the development of: standardised messages

for prescribers, pharmacists, payers and/ or other interested parties to exchange multi-

directional information and, most importantly, the maintenance of: standard forms and

guidelines to accommodate electronic pharmacy claim information at the point-of-service.

[92]

Maintainer: National Council for Prescription Drug Programs (NCPDP)

CLSI

Globally applicable voluntary consensus documents and guidelines for healthcare testing are

another area of standards development. In particular, clinical laboratory testing and in vitro

diagnostic test systems are considered here. [54]

Maintainer: Clinical and Laboratory Standards Institute (CLSI), formerly called National

Committee for Clinical Laboratory Standards (NCCLS)

ADA

Standards, specifications, technical reports and guidelines are also developed for: compo-

nents of a computerised dental clinical workstation and electronic technologies used in dental

practice. [238]

354 11 Res Medicinae

Maintainer: Standards Committee on Dental Informatics (SCDI) belonging to the American

Dental Association (ADA)

CDISC

Standards with focus on the global, platform-independent data exchange between informa-

tion systems are based on: data models (that) will ultimately support the end-to-end data

flow of clinical trials, from the source(s) into an operational database, through analysis

to regulatory submission. The sources of data that are relevant to (these standards) vary

among patient records – e.g. case report form data, clinical laboratory data, data from

contract research organizations, shared data between companies with corporate mergers or

development partners, and other sources. [49] In this context, two kinds of data modelling

are distinguished:

- Operational Data Modeling (ODM): referring to standard data interchange models

that are being developed to support data acquisition, interchange and archiving of

operational data

- Submission Data Modeling (SDM): referring to standard metadata models being de-

veloped to support the data flow from the operational database to regulatory submis-

sion

Maintainer: Clinical Data Interchange Standards Consortium (CDISC)

eHC

Finally, there are specifications defining electronic Health Cards (eHC) or Health Profes-

sional Cards (HPC), like the ones to be introduced in Germany, in 2006. [105] They describe

the Card Operating Systems (COS), basic card applications and -functions, as well as many

other issues like electronic prescriptions.

Maintainer: Deutsches Institut fuer Medizinische Dokumentation und Information (DIMDI)

11.3 Standards 355

11.3.6 Standards Development

Standards development in its today’s form found a lot of critics, especially among developers

of the OSS community [19]. Their complaints concern the:

- Nondisclosure and secrecy of specifications

- Lengthy update cycles

- Limited access to standardisation bodies

- High membership fees

Thomas Beale who argues that the current paradigm of development of technical/ informa-

tion standards were broken at the core anyway [19], has some more arguments, which are

summarised following.

Unproven Specifications The operativeness of technical specifications and designs pro-

duced by Information Technology (IT) Standards Development Organisations (SDO) were

never proven in practice, yet the best way to test a design was to try to build it. Current

standards specifications rather reminded on what software engineers would call Requirements

Analysis Models.

Static Documents Modern developers understood the idea of a Living Documentation

– one which were never finished and always under modification due to feedback from im-

plementation and actual use. That is why systems got rebuilt two or three times before

they were really good. Yet this didn’t happen with standards. They were published as

static documents, and the available feedback processes were so slow as to be nearly useless.

But feedback had crucial value in validating and improving specifications. Many standards

processes continued as talk-/ documentation fests for years, before anyone seriously tried to

validate the models or designs.

Missing Methodology Standards specifications were not developed by any recognised

engineering Methodology, often without any discipline whatsoever. Instead, they were de-

veloped by ad hoc argumentation in conference rooms, by whoever happens to turn up, with

whatever skills (often many skills, but few relevant ones). Sometimes, whoever shouted the

loudest would win.

356 11 Res Medicinae

Arbitrary Definitions The current results of many technical standards definition efforts

were often arbitrary, contained bad modelling, and did not have proper statements of the

problem or rigourously developed technical artifacts.

Beale concludes that any IT standards development not being a live process with Imple-

mentation and Use and Feedback Loops, were not worthwhile.

11.3.7 Implication

The number of standards for medical informatics is huge. The fields covered by these

standards are manifold. Popular standardisation efforts dealing with the EHR structure are

Open EHR and CEN 13606.

The borders to messaging and communication standards are blurred. Although HL7 ’s focus

lies on message exchange, it created data structures in form of its RIM framework, too; a

newer result for document exchange is their CDA specification. The former two standards

(CEN 13606 and Open EHR), on the other hand, focus on the EHR structure but offer a

communication format as well; it is called Transaction or Composition, respectively. Beale

concludes in [168]: . . . all efforts have converged independently on at least one solid concept

– the unit of change and committal in the EHR.

OMG’s HDTF defines interfaces for the exchange of messages, which are grouped into special

services. Some national efforts have defined their own data exchange formats, like the xDT

standard (to become SCIPHOX) in Germany. Yet other standards recommendations for

electronic data interchange in medicine are EDIFACT, worked out by the UN, and HXP,

defined by a number of medical OSS projects.

To what concerns the field of medical terminology, there exist longer-lasting efforts like ICD,

LOINC, SNOMED CT, OpenGALEN or UMLS. Depending on their scheme of organisation,

they may be grouped into the three categories: enumerative, compositional and lexical. A

lot of time and money has been invested into them, yet only recently, their results have been

adopted by increasingly more systems. Good acceptance and popularity was reached for the

ICD codes classification system.

Other standards for related fields exist, among them being DICOM for clinical imaging

and -device communication, NCPDP for the transmission of pharmacy data, CLSI for

clinical laboratory testing, ADA delivering guidelines for dental informatics or CDISC for

the exchange of large amounts of various data between information systems.

11.4 Realisation 357

For the purpose of this work, with a minimalistic implementation of a prototype application,

the considered (de facto) standards specifications mainly had a helper function, giving some

architectural guidance. Concerning the record architecture, CYBOL applications follow the

purely compositional principles of CYBOP anyway, so that record modelling advices had

only few implications. CYBOI’s architecture, however, is flexible enough to support many

messaging standards in the future, by simply adding the corresponding translator mod-

ules. Existing terminologies can partly be used by associating terms appearing in CYBOL

knowledge templates with their pendants in common terminology systems.

A promising trial, in this context, would be to use CYBOL for building up new, or structuring

existing terminologies. CYBOL innately supports compositional structures, which makes it

a perfect match for compositional schemes. Further, it allows to add meta information

as well as to integrate constraints. The meta information, which is contained in so-called

property tags of a term (chapter 9), at system runtime called details, may link to more

than one superior (parent) category, thereby placing the term simultaneously under different

categories that are valid. Thus, some problems of current terminologies (section 4.6.6) might

get solved. But this remains to be figured out in future works (chapter 13).

Standards for imaging, pharmacy- or laboratory data transfer, guidelines for dental infor-

matics, health card usage and related specifications will be considered closer as soon as more

application modules are developed within Res Medicinae.

11.4 Realisation

Having analysed the domain of healthcare and having investigated corresponding standards,

actual design solutions that have been tried out in the course of this work, by implementing

them in software source code, can be described in the following sections.

11.4.1 Student Works

Some helpful contributions came from a number of students, collaborating within the CY-

BOP and/ or Res Medicinae projects. The works, completed at the Technical University of

Ilmenau (TUI), are of the three types: Seminar Paper, Research Project or Diploma Thesis,

and listed with their title and results in table 11.1.

358 11 Res Medicinae

The first six of these works were intended to become modules for the first-trial Java prototype

of Res Medicinae, as described in the next section. Further works created tutorials for

different base technologies, such as the Xlibs library of the X Window System or Socket

Communication mechanisms. Finally, one diploma thesis helped in defining the CYBOL

language, by creating a prototype in it.

Title Type Result

A flexible Software Architecture for Presentation

Layers demonstrated on Medical Documentation

with Episodes [31]

Diploma

Thesis

Java application for topolog-

ical documentation

A Technology-neutral Mapping Layer for Data

Exchange demonstrated on Medical Form Print-

ing as integrative part of an EHR [185]

Diploma

Thesis

Java application with one

form and persistent storage

of data

Creating a Backup Module under Consideration

of Common Design Patterns as provided by the

ResMedLib Framework [23]

Research

Project

Java application for file

backup

Creating Web Frontends for Scheduling and Man-

agement of administrative Data, based on a Web-

server with JSP Technologie [140]

Research

Project

Apache webserver extension

using Java and JSP

Creating Intuitive Frontends under Consideration

of Internationalisation Aspects [171]

Research

Project

Java application in English,

German and Tamil (Latha)

Evaluating Component Technologies in the Do-

main of Medical Image Processing [177]

Diploma

Thesis

ImageJ extension for image

transfer via CORBA and

SOAP

X11 Architecture and XLib Functionality [83] Seminar

Paper

Tutorial and prototype

Communication over Sockets [175] Seminar

Paper

Tutorial and prototype

XML Parser [311] Seminar

Paper

Code fragments

Implementation Possibilities for CYBOL Web

Frontends, using Cybernetics Oriented Program-

ming (CYBOP) Concepts [141]

Diploma

Thesis

CYBOI extensions and a

more detailed CYBOL spec-

ification

Table 11.1: Student Works [256]

11.4 Realisation 359

11.4.2 First Trial

An early trial of a Res Medicinae module was Record, an application for EHR management

(figure 11.5). It was a standard Java-based system and had a Graphical User Interface

(GUI). Its classical architecture made use of many software patterns (section 4.2) and was

shared into the parts Domain Model, Graphical View and Controller, as proposed by the

equally named pattern, abbreviated MVC.

Figure 11.5: Early Record Module

Later prototypes extended that architecture by applying the CYBOP concept of Composi-

tion. In a first step, the Hierarchical MVC (HMVC) pattern was used to replace the MVC

pattern, resulting in nested Controllers and Views (figure 11.6). Afterwards, the principle

of Hierarchy was applied in general, also to Domain Models and to as many other parts as

possible.

Classes as known from Object Oriented Programming (OOP) do not represent dynamically

extensible containers but have a static structure with a fixed number of attributes. In

other words, the Hierarchy as concept is not inherent in OOP types. Yet abstract models

as humans build them in their minds are always based on hierarchies (section 7.1.3). A

programming language which does not consider this, does not allow users to make full use

of their modelling potential.

To eliminate this flaw and implement a hierarchical structure in the Java prototype, a top-

360 11 Res Medicinae

Figure 11.6: Nested Views of Module Frames

most super class named cybop.Model had to be introduced (compare also figure 7.15). It

represented a container that had the capability to reference itself – in other words a Tree

Structure. As such, it offered set, get and remove methods for its elements. Since these

access methods were inherited, sub classes did not have to implement their own (for each

attribute) anymore, which saved hundreds of lines of source code.

One of these advanced modules (ReForm) assisted medical form printing [185], another one

(ResAdmin) managed administrative data of patients with emphasis on internationalisation

[171], yet another one (ResData) served as appointment and scheduling module, accessible

over web [141], a backup application (Restore) was implemented as well [23] and a last

module (Record, in an extended version) was responsible for clinical documentation [31].

This documentation process was supported graphically, by Record’s ability for Topological

Documentation (figure 11.7) and, of course, it could also manage and store patient data, in

XML files.

11.4.3 Knowledge Separation

In the case of the first prototypes, one could still speak of true Implementation, because

design models had to be transferred into another form of abstract model: the Java program-

ming language source code. Not so in later versions of Res Medicinae.

11.4 Realisation 361

Figure 11.7: Topological Documentation in Record Module [31]

While the early prototypes represented the classical mix of domain knowledge and low-level

system instructions, that was eliminated later. All knowledge got extracted and was put

into special configuration files, in CYBOL format (section 9). Henceforth, these contained

not only settings like font size or colour, as known from standard applications, but the whole

domain knowledge, including user interface- and workflow structures.

Following the explanations of part II of this work, the static knowledge was shared into

different models, some representing state-, and others logic knowledge. This was very much

opposed to the earlier Java implementations whose classes bundled attributes and methods.

Without the knowledge, the remaining program code looked pretty much like a skeleton

of basic system functionality. Serving as hardware interface, it concentrated memory- and

signal handling in one place – exactly those things which part II of this work called Dynamics.

Additionally, that remaining system had the ability to interpret knowledge, which is why it

was called CYBOI (interpreter). One could, in some way, compare it with what the Java

Virtual Machine (JVM) is for Java, only that CYBOI processed knowledge given in form of

CYBOL templates, which look different than Java source code.

CYBOI needed an XML Parser in order to be able to read the knowledge contained in

CYBOL files. The decision here fell on Apache’s Xerces [268], because one of its versions is

implemented in Java.

362 11 Res Medicinae

11.4.4 Reimplementation

The architecture-advanced prototype of the Record module had much less functionality

than earlier ones, in fact not much more than starting a graphical frame with menu bar and

exiting the application again. This was so, because yet before all domain knowledge could

be extracted into CYBOL, another issue turned up:

CYBOP modelling concepts like Itemisation or Composition are an integral part of the

CYBOL knowledge representation language. Other concepts like the Bundling of attributes

and methods, property- and container Inheritance, as known from Object Oriented Pro-

gramming (OOP), were considered unfavourable (section 4.1.15) and neither to be used in

CYBOL, nor in the CYBOI interpreter. Consequently, OOP languages like Java or C++

were not suitable for CYBOI any longer. A slim and fast language, close to hardware and

fast in processing CYBOL was needed.

Having such requirements, one of the first candidates coming to mind was the C program-

ming language. It is high-level enough to permit fast programming and low-level enough

to connect efficiently to hardware or an Operating System (OS). Many OS are written in C

themselves, anyway. CYBOI was therefore reimplemented in C, which hasn’t changed since.

What has changed and is changing all the time is its functionality, an overview of which was

given in chapter 10.

CYBOL sticks to the XML specification and standard XML parsers can be used to process

and validate it. However, for reasons of performance and better integration, and due to

the very limited vocabulary (set of possible tags and attributes), special parsing procedures

were written and adapted to CYBOI.

Another problem that had to be solved was Graphical User Interface (GUI) handling. While

the Java-implemented CYBOI could make use of the Abstract Windowing Toolkit (AWT)/

Swing, the C-implemented CYBOI did not have such functionality at first. Toolkit candi-

dates like Qt [315] or wxWindows [288], being implemented in C++, were out. Other GUI

frameworks like the Gimp Toolkit (GTK) [307], written in C, were considered cumbersome to

cope with so that finally, the decision was taken to use low-level graphics drawing routines.

For CYBOI, being developed on a GNU/Linux OS [313], that meant using XFree86’s [58]

X-Library (Xlib) functionality directly. The necessary effort for transforming hierarchical

CYBOL models into GTK- or other toolkit structures was estimated to be equal or even

higher than translating them into Xlib functionality right away. At the time of writing this

work, implementation is in progress but not completed.

11.4 Realisation 363

Similar implementations are necessary for Textual User Interfaces (TUI), Web User Inter-

faces (WUI) and Socket Communication Mechanisms, the latter two being already finished

in a first version. Further development activities may for instance enable CYBOI to run on

other platforms and integrate more hardware-driving functionality, to get independent from

underlying OS.

While the CYBOL specification can be considered quite mature, CYBOI, as could be seen,

will need plenty of extensions and additions in future, in order to leave its prototype stage

and become fully usable.

11.4.5 Module Modelling

When CYBOI had become more stable (besides the extensions that were – and are – fre-

quently implemented), development could focus on the actual application again. From now

on, Res Medicinae modules only had to be modelled in CYBOL, but no longer had to be

coded in a programming language. The designed state- and logic knowledge, existing in form

of CYBOL templates, already represented the complete application; no further implemen-

tation phase was needed.

wui head

body

meta_data

book_name

address_table

row_break

add_button

first_nametable_header

last_name

edit_link

delete_link

table_row_$0

table_row_$1

address_book name

addresses

address_$0

address_count

address_$1

first_name

last_name

street

domain

logic startup

add_address

refresh_wui

send_address

Figure 11.8: ResAdmin Knowledge Models (Extract)

Due to the tremendous complexity of an Electronic Health Record (EHR), only a very

364 11 Res Medicinae

small part of its data could be considered for the application prototype within this work.

Administrative data like a person’s name or address are standard information found in all

EHRs. A corresponding module named ResAdmin [141] was therefore elected to be realised

first (compare module list in section 11.2.6). Its models belong to three categories: Domain,

Web User Interface (WUI) and Logic (figure 11.8).

Figure 11.9: Simple Web User Interface of the ResAdmin Module [141]

The addresses contained in the domain branch of the knowledge tree are manipulated across

Hyper Text Markup Language (HTML) User Interface (UI) models belonging to the web

branch of that same tree. An example structure of a knowledge tree was shown in figure 8.15.

Figure 11.9 shows the minimal WUI. Every action model that a user can trigger through

the WUI exists as part of the logic branch of the knowledge tree.

Independently of what kind of knowledge model (state or logic) was created, the ontological

principles (section 7.3) were strictly followed. Most importantly, relations within a hier-

archical model were always unidirectional, that is from a Whole- to its Part models, but

never the other way around. Additionally, however, logic models may reference and access

runtime state models.

Some of the logic models represent Translators (compare section 8.2). They extract address

information residing in the domain- and copy them to the web model, which is afterwards

sent to the human user as communication partner. This principle holds true for the com-

11.4 Realisation 365

munication between application systems, only that then other than web models are used as

communication format. The vision to make all communication channels really transparent

and easy to handle for the user now seems to be coming true. The following example shows

an extract of a CYBOL logic knowledge template for ResAdmin:

<part name="set_loop_index" channel="inline" abstraction="operation" model="copy">

<property name="source" channel="inline" abstraction="integer" model="0"/>

<property name="destination" channel="inline" abstraction="knowledge"

model="domain.index"/>

</part>

<part name="set_address_count" channel="inline" abstraction="operation" model="count_parts">

<property name="basename" channel="inline" abstraction="string" model="address"/>

<property name="model" channel="inline" abstraction="knowledge"

model="domain.addressbook.addresses"/>

<property name="result" channel="inline" abstraction="knowledge"

model="domain.addressbook.addresses.address_count"/>

</part>

<part name="compare" channel="inline" abstraction="operation" model="compare">

<property name="left_operand" channel="inline" abstraction="knowledge"

model="domain.index"/>

<property name="right_operand" channel="inline" abstraction="knowledge"

model="domain.addressbook.addresses.address_count"/>

<property name="operator" channel="inline" abstraction="string"

model="greater_or_equal"/>

<property name="result" channel="inline" abstraction="knowledge"

model="domain.break_flag"/>

</part>

<part name="create_table_body" channel="inline" abstraction="operation" model="loop">

<property name="break" channel="inline" abstraction="knowledge"

model="domain.break_flag"/>

<property name="index" channel="inline" abstraction="knowledge"

model="domain.index"/>

<property name="model" channel="inline" abstraction="knowledge"

model="logic.create_table_rows"/>

</part>

<part name="send_wui" channel="inline" abstraction="operation" model="send">

<property name="language" channel="inline" abstraction="string" model="tcp_socket"/>

<property name="receiver" channel="inline" abstraction="string" model="user"/>

<property name="message" channel="inline" abstraction="knowledge" model="web"/>

</part>

The loop index and address count parameters are initialised first, before a comparison op-

eration possibly sets the loop’s break flag. Then, the actual loop is executed and table rows

366 11 Res Medicinae

are created, until the break flag is really set. Finally, the complete web knowledge model is

sent via tcp socket to the human user as receiver watching the WUI graphically rendered

by a web browser.

It can be concluded that the simple prototype module ResAdmin, realised within the

Res Medicinae project, demonstrates how a CYBOL application including domain-, user

interface- and logic models may look like.

Part IV

Completion

12 Review

Knowledge can create problems.

It is not through ignorance that we can solve them.

Isaac Asimov

This chapter will review the whole work in brief. It begins with firstly, validating the

achieved results in comparison to the aims set initially. Secondly, a short discussion will

evaluate these results once more, before a third section mentions limits of the proposed

solution.

12.1 Validation

The state-of-the-art chapters 2, 3 and 4, at the beginning of this work, dealt with the

Software Engineering Process (SEP), the Physical- and Logical Architecture of information

systems. A rather large number of existing software design concepts were investigated,

and some of their aspects criticised, before chapter 5 suggested a new approach for their

improvement. Many of its new concepts and ideas stem from nature or other disciplines

of science, which is why that programming approach was given the attribute cybernetics-

oriented (CYBOP). Part II then proposed a slightly different view on how to abstract

knowledge in form of software, which part III tried to prove by introducing a language and

interpreter, as well as an application prototype using both.

In order to validate the results of this work, the following sub sections explain once again in

short why many of the problems identified in today’s programming language concepts are

solved when applying CYBOP principles.

370 12 Review

12.1.1 Distinction of Statics and Dynamics

A first major mistake in current language concepts and design solutions is the mix-up of

static and dynamic parts of software, that is pure application-domain knowledge and its

processing, close to hardware. It is the reason for:

a Abstraction gap between designed system architecture and implemented source code,

in a SEP (section 2.6)

b Global data access via static class methods being insecure (section 4.2.3)

c Bidirectional dependencies caused by some software patterns (section 4.2.2)

d Usage of reflective techniques which are based on bidirectional dependencies and often

cause broken type systems with circular references between super- and sub platform

(section 4.2.1)

e Spread functionality through crosscutting concerns and complicated handling of as-

pects (section 4.3.6)

f Memory leaks

g Repeated implementation of the same platform-dependent functionality

h Repeated usage and copying of the same software patterns (section 7.2.1)

Chapter 6 therefore recommended a strict distinction of high-level static knowledge and low-

level dynamic system control functionality. The CYBOL language (chapter 9) was defined

to express and specify knowledge in the most general sense; the CYBOI interpreter (chapter

10) was created to control a system based on CYBOL input.

a Since CYBOL knowledge templates are a complete formal description of an application’s

architecture, they represent its implementation at the same time. But that also means that

the transfer of a system’s design into a programming language, as known from classical

application development, becomes superfluous. The Design- and Implementation phases

are merged, so that a gap does not exist anymore.

b Since CYBOI holds all knowledge in one single instance tree whose nodes can be accessed

along well-defined paths, data are not globally accessible anymore.

c Since parts of a knowledge model are accessed unidirectionally, bidirectional dependencies

are not an issue any longer.

12.1 Validation 371

d Since CYBOI is based on one standardised knowledge schema providing a well-defined

type structure which does not have to be changed at runtime, there is neither a need nor a

possibility for workarounds like reflective mechanisms causing a broken type system. Because

the knowledge schema’s whole-part hierarchy already provides meta information such as a

part model’s name and kind of abstraction (comparable to an attribute’s name and type

hold by the meta class of a class), one main reason for using reflective techniques like meta

classes thereby falls apart. A second reason that does not count any longer is the provision of

basic features (like persistence or communication) through meta techniques; CYBOI already

contains these features and may act as universal communicator.

e Since CYBOI does provide all necessary low-level mechanisms, crosscutting concerns be-

come superfluous. These concerns usually want to achieve the same as reflection in that

they provide basic functionality to all parts of a system. However, since CYBOL knowl-

edge templates are free from low-level system control information and contain pure domain

knowledge instead, crosscutting concerns and aspects are not a topic of interest any longer.

f Since CYBOI concentrates all knowledge models (instances) in one place, as branches

of one single knowledge tree, forgotten models can get smoothly destroyed at application

shutdown. Traditionally, special mechanisms like Garbage Collectors (GC) had to be applied

to achieve this, because systems written in classical languages leave it up to the programmer

to properly reference all instances. If a reference to one instance was lost, it could not get

destroyed and resided as leak in memory. Often, more and more memory space got blocked

that way, until all RAM space was taken and a computer hung (crashed). In CYBOI, a

reference to any instance is always available, via the root of the knowledge tree.

g Since CYBOI contains all hardware-dependent functionality, the application knowledge

encoded in CYBOL templates or serialised models is truly platform-neutral, easily switch-

able and exchangeable among systems. The low-level system gets uninteresting; high-level

knowledge is what application developers can now concentrate on. Finally, the old dream of

having knowledge engineers (domain experts) working independently from software system

engineers might possibly be coming true.

h Since CYBOI already implements all necessary patterns, application developers and

domain experts are freed from the burden to learn and apply the same software patterns

372 12 Review

again and again; they can now develop application systems considering just one concept:

that of hierarchical Composition.

12.1.2 Usage of a Double-Hierarchy Knowledge Schema

A further problem that was identified in this work is the missing concept of hierarchy, which

is not inherent in types of the corresponding languages. Moreover, knowledge structures are

mixed up with meta information leading to:

a Inflexible static typing in system programming languages (section 4.1.7)

b Fragile base class problem when using inheritance (section 4.1.15)

c Overly large source code due to encapsulation without sense (section 4.1.15)

d Unpredictable behaviour and falsified contents due to container inheritance (section

4.1.15)

e Redundant code caused by concerns and difficult application of an ontological struc-

ture (section 4.3.5)

f Complicated, partly impossible serialisation of knowledge models

Chapter 7 therefore proposed a new knowledge schema which considers structural- as well

as meta information, in two different hierarchies.

a Since type information is not fixed statically, it gets dynamically configurable at runtime,

leading to highly flexible application systems. There is only one static data structure – the

standardised knowledge schema. It holds meta information about the kind of abstraction

(type) of the data contained in it.

b Since runtime knowledge models in CYBOI rely on composition only, the fragile base

class problem caused by runtime type inheritance in object-oriented systems does not occur.

c Since the CYBOI-internal knowledge structure is a container by default, it also provides

all necessary access procedures. Thousands of useless access methods as known from object-

oriented programming are avoided. The partial security they provided can be replaced with

other mechanisms. Since all knowledge resides in just one instance tree, it is easy to apply

any kind of security checks, whenever a part of the knowledge tree gets accessed.

12.1 Validation 373

d Since each CYBOP knowledge template or -model is constructed as hierarchy, so that

containers of any kind can be emulated, problematic container inheritance belongs to the

past.

e Since CYBOP knowledge models are purely hierarchical, it gets easier to apply ontolog-

ical structures which bundle functionality, instead of spreading it in a concern-like manner.

f Since all knowledge is modelled hierarchically, it is easily serialisable and hence exchange-

able.

12.1.3 Separation of State- and Logic Knowledge

A third aspect causing troubles in software system design is the bundling of state- and logic

knowledge, known from object-oriented programming. It results in:

a Difficult handling and repeated implementation of the same communication mecha-

nisms (section 3.13)

b Differing patterns complicating the handling of communication (section 4.2)

c Bidirectional dependencies (circular references) between classes/ objects in object-

oriented systems, due to attribute-method bundling (section 4.2.2)

d Pre-defined logic concepts in structured/ procedural- as well as object-oriented pro-

gramming

Chapter 8 therefore suggested a separation of state- and logic concepts, in order to eliminate

unnecessary inter-dependencies and to be able to apply a unified translator architecture.

a Since low-level communication mechanisms are implemented in CYBOI, application de-

velopers writing CYBOL knowledge templates do not have to bother with these anymore.

b Since standard communication patterns are unified, the handling of communication is

simplified. Thanks to this unification, an extensible translator architecture can be applied.

Using it, any kind of abstract knowledge model can be translated into any other. Universal

communication becomes possible.

374 12 Review

c Since state- are split from logic concepts, many (partly bidirectional) dependencies be-

tween knowledge models disappear, which reduces the coupling between- and increases cohe-

sion within models. Both kinds use exclusively unidirectional relations. Additionally, logic-

may access state models and each other, but always unidirectionally.

d Since logic concepts (algorithms, workflows) are themselves modelled as CYBOL knowl-

edge templates, they become configurable. Traditionally, only structures representing states

are manipulatable at runtime; procedures representing logic are fixed and cannot be al-

tered.

12.2 Evaluation

Having validated the results of this work, their impact on software design and -engineering

can be discussed and evaluated.

12.2.1 Knowledge Triumvirate

Chapter 7 introduced a new Schema for knowledge representation; chapter 9 defined a

language for knowledge specification, in form of Templates; chapter 10 described a system

for knowledge processing, that uses Models.

All three of them are closely connected (figure 12.1): The CYBOP knowledge Schema

provides a structure for both, knowledge templates and -models; CYBOI Models are the

dynamic runtime instances of static design-time CYBOL Templates.

One reason for the mix-up of domain knowledge and system control in traditional applica-

tions is the lack of a comprising solution for knowledge representation. Software systems

always have to fall back to using programming paradigms that introduce more and more

dependencies, as the system grows. John F. Sowa [294] writes:

The enhanced productivity of the Fourth Generation Languages (4GL), the

Object Oriented Programming Systems (OOPS) and the Computer Aided Soft-

ware Engineering (CASE) tools is derived from a common strength: improved

methods of representing application knowledge in a form that can be used and

reused by multiple system components. Their limitations result from a common

12.2 Evaluation 375

template schema model

statics

cybol language

analysis / design time

domain expert /

application developer

structure

cybop concepts

research time

knowledge architect /

information scientist

dynamics

cyboi interpreter

runtime

systems developer

influence

instantiation

influence

Figure 12.1: Knowledge Triumvirate with Schema, Template and Model

weakness: the inability to share that knowledge with systems that use a dif-

ferent representation. The potential for conflict is inevitable: sharing requires

a common representation, but independently developed systems almost invari-

ably use different representations. In order to support knowledge sharing among

heterogeneous systems, the conceptual schema must be general enough to ac-

commodate anything that can be represented in any current system, any legacy

system inherited from the past, and any new system that may be developed in

the future.

CYBOP claims to provide just that – a common schema for knowledge representation and

-exchange. If not perfect, it is certainly a first step towards an all-general knowledge schema.

Section 4.1.9 contained a quote in which the Association of Lisp Users [227] states that,

other than Functional Programming, Procedural Languages essentially performed everything

as Side Effects (variable updates persisting after expression evaluation) to data structures. A

purely procedural language, after [227], would have no functions, but might have subroutines

of no arguments that returned no values, and performed certain assignments and other

operations based on the data it found stored in the system. This is almost how CYBOI

manipulates its knowledge – in the manner of one huge side effect. Its procedures do forward

some parameters, but only one of these is really application-related: the Knowledge Tree.

376 12 Review

State- and logic knowledge given in form of CYBOL templates are not bundled with low-

level CYBOI procedures. Both are configurable knowledge. Logic knowledge models do not

get input/ output (i/o) parameters handed over directly, but as dot-separated path to the

corresponding value in the knowledge tree.

Because all knowledge is stored in tree-form, application systems become much more flexible

than complex class networks as known from object-oriented programming. Tree structures

are easy to edit, with or without supportive tools. They allow to better estimate necessary

changes caused by new requirements, because dependencies are obvious. Software mainte-

nance gets improved, because application developers can focus on pure domain knowledge;

low-level system functionality is provided by CYBOI. CYBOL applications are therefore

absolutely portable between platforms, as long as these were already considered in the un-

derlying CYBOI. Due to the straight-forward possibility of accessing parts of a knowledge

tree along well-defined paths, applications may win in performance.

12.2.2 Common Knowledge Abstraction

Although this work does not address the Software Engineering Process (SEP) directly, its

results have great effect on it, which this section wants to shed some more light on. Classical

SEP phases are: Analysis, Design and Implementation (chapter 2).

common knowledge abstraction

software engineering process

analysis design

requirements

document

architecture

diagrams

source

code

feature

model

implementation

state knowledge

logic knowledge

software engineering process

analysis design

Figure 12.2: Common Knowledge Abstraction useable by many SEP Phases

12.2 Evaluation 377

Section 2.6 pointed out abstraction gaps and multiple development paradigm switches, hap-

pening during a software project’s lifetime. It set out to find a Common Knowledge Ab-

straction for all phases. The results of this work overcome Gap 2, as shown in figure 2.6.

Knowledge models as specified in this work can be used throughout most project phases (fig-

ure 12.2). Domain experts and application developers work with platform-neutral knowledge

templates. Since these are interpreted, a translation into classical software source code is

not necessary anymore. CYBOL knowledge templates represent the designed architecture

and implemented application, at the same time. The formerly needed implementation phase

thus disappears, which shortens the whole SEP. It is hard to estimate the amount of saved

time and costs.

Using CYBOL, experts can hopefully yet more actively contribute to application develop-

ment. Consequently, there may be less organisational problems in projects and companies, if

experts and system developers can independently develop their parts (CYBOL vs. CYBOI)

of the application system to be created. The whole SEP may become more transparent and

understandable, and hopefully produce more flexible, stable and secure systems. However,

the exact effort, especially to what concerns security issues cannot be estimated yet and has

to be investigated further.

12.2.3 Long-Life Software System

The pure existence of proper knowledge does not suffice to create an improved kind of

software system, within a slimmer software development process. The new systems need to

know how to handle knowledge, at runtime. The criticism is twofold, because traditionally:

1. Operating systems do not have sufficient knowledge handling capabilities

2. Applications contain too much low-level system control functionality

This is changed when using CYBOP. The active CYBOI interpreter encapsulates memory

allocation, persistence- and communication mechanisms, signal handling, logging facilities

and more, which belong to the system level. While traditional programming philosophies try

to make these reusable, CYBOI implements them just once, in a manner that all applications

can access and use them. As a side-effect, the need for the study and repeated application

of software patterns disappears. Additionally, and most importantly, CYBOI knows how to

handle knowledge provided in form of passive CYBOL templates.

378 12 Review

Although still dependent on an underlying operating system (for hardware device drivers and

more), CYBOI is developing towards becoming one itself. Applications, on the other hand,

do not have to care about communication paradigms and other low-level issues anymore;

their focus is pure domain knowledge, encoded in CYBOL.

In classical type-based systems, no matter whether created in an SPP- or OOP language,

the type of data needs to be known to find out about their structure and functionality. In

CYBOP systems, all compound knowledge models have the same structure. Since they do

not differ, they can be manipulated in the same manner. Only types (the kind of abstraction)

of state primitives and logic operations need to be distinguished.

CYBOL knowledge templates, of which a Clone is made when a knowledge model (instance)

gets created, are not treated as types. Once a knowledge model exists, its original knowledge

template can never be accessed by it again, since a model holds no reference to its template.

A template merely delivers the initial values for the model instantiated from it. After

creation, a model exists on its own. It can be used and modified independently of any types,

and is thus absolutely flexible.

But that also means that systems implementing the CYBOP knowledge schema are more

future-proof. Unforeseeable requirements can be implemented anytime, without a static

type model having to be changed, without fragile classes having to be considered, without

dependencies causing existing functionality to break. CYBOP systems are therefore Long-

Life Systems without architectural decay. Domain-/ application model changes do neither

affect the structure of the knowledge schema, nor other parts of the static architecture of

the underlying CYBOI interpreter.

The argument that systems developed in this manner were not safe because they lacked

the constraints defined by a type does not hold, since also classical systems permit runtime

objects to get manipulated, and to be assigned values not matching their type. In this case,

of course, the system is alerted with an error, but in the end it is always the application

developer who has to handle – or better prevent such errors.

12.3 Limits

Naturally, there are Limits to CYBOP. For instance, it:

- does not claim to be the approach for all kinds of programming problems, although

12.3 Limits 379

it thinks to contribute suitable concepts for at least standard business application

development. However, its usability for hardware-close systems with Real Time (RT)

requirements, or for control engineering is questionnable and yet to be investigated;

- depends on the existence of a system with knowledge-processing capabilities, which

current Operating Systems (OS) are not. The CYBOI delivered with it is quite mature,

but still lacks functionality like different User Interfaces (UI), various import/ export

(i/e) filters/ translators, better error handling, prioritising and further OS features.

Only functionality already implemented in CYBOI can also be used in CYBOL. But

because CYBOI is free software, continuously developed in an open project, new

features shall be implementable shortly;

- has no type-checking features like classical compilers. This is the cost of flexibility.

The knowledge schema is the only type structure provided by CYBOI. All domain-

and application knowledge is hold externally, in CYBOL knowledge templates, and

interpreted only at runtime;

- will have performance problems when using UI models, especially graphical ones,

because these are sent in complete to the graphics adapter card, whenever a minor

change is made. Techniques have to be found, that update only clips of a UI model,

in graphics memory. The difficulty herein is that CYBOL application knowledge has

no direct access to system-level functionality;

- does not eliminate all abstraction gaps in a SEP. Requirements described informally

by an analysis document have to be mapped to CYBOL knowledge templates, which

then represent the application to be created. Although analysts and experts may

create CYBOL models right from the project start, there will probably never be

a true replacement for the written requirements analysis document, as one form of

abstraction. However, if not the informal descriptions of its models, the document

itself may be created in CYBOL, since it represents knowledge.

13 Summary and Outlook

To be Idealist means: Having Power for Others.

African Saying

The final remarks of this work sum up its content once more, before mentioning possible

topics for future research.

13.1 Summary

As Information Society becomes reality and the collective knowledge of mankind grows, new

ways for its storage, processing and communication have to be found. It is not that difficult

to store simple data, pure information. It is much harder to store and reproduce structured

data with meaningful associations, what makes up actual Knowledge.

This work reports about a new knowledge abstraction paradigm called Cybernetics Oriented

Programming (CYBOP). It did not originally intend to create an all-new paradigm. Initially,

its sole aim was to investigate and possibly improve existing concepts of software system

design, by comparing them with principles found in other sciences besides informatics, and

nature – as the name Cybernetics signifies.

Traditional programming concepts revealed a number of weak points, not all of which shall

be mentioned here again. The previous chapter 12 reviewed them in detail. However, the

most problematic ones, in short, are:

- Mix of static application (domain) knowledge and dynamic system control function-

ality

- Immaturity of schemas (types) ignoring hierarchical structure and mixing in meta

information

382 13 Summary and Outlook

- Bundling of states and logic, and inflexible logic (procedures) in current programming

languages

It is them which cause unwanted, bidirectional inter-dependencies between layers of a soft-

ware system, which make instance trees unnavigatable and static data access therefore neces-

sary, which, together with a whole number of further issues, finally produce inflexible systems

that are hard to maintain and thus prone to errors. Solving these frequently trouble-causing

issues was a main motivation to write this work.

Following an interdisciplinary approach, several considerations of phenomenons as found in

physics (dimensions), biology (human being as system), philosophy (structure of the uni-

verse), psychology (human thinking) and others delivered the ideas after which the theory

behind CYBOP was conceived. Trusting these observations, CYBOP suggests three impor-

tant points, namely: the distinction of Statics and Dynamics, the usage of a new Knowledge

Schema with double hierarchy, and the separation of State- and Logic knowledge.

Since these are not consequently realised in today’s programming environments, the new

Cybernetics Oriented Language (CYBOL) and a corresponding Cybernetics Oriented In-

terpreter (CYBOI) had to be created, the latter actively managing and communicating

knowledge formally specified in the former. Their general operability was proven through a

minor, prototypic application called Res Medicinae. Certainly, plenty of extensions are still

needed to make them all really useful.

Although not all consequences CYBOP has on software development and related fields could

be considered, it surely affects the way application systems are created (abolished imple-

mentation phase). But CYBOP’s extension and its embedding into a Software Engineering

Process (SEP) are possible topics for future works.

First and last, CYBOP tries to deliver new ideas showing ways out of stagnation in software

technology, what was called Software Crisis at the beginning of this work. It wants to

improve some of the apparent deficiencies in current programming paradigms, and it may

even have the potential to partly replace them. Software can become more flexible, clear,

easy-to-understand and by this more reliable and better maintainable. Software development

is not dead. On the contrary: it is further growing in importance and just starts to become

interesting!

13.2 Future Works 383

13.2 Future Works

The improvement of CYBOP’s limits as mentioned in section 12.3, its extension and further

issues not yet covered by it may form topics for future research. Some examples are given

following.

Nature as Pool of Ideas for Software Design Further analogies between nature, sciences

and software design/ informatics in general could be worth investigating. In particular the

human brain and -mind seem to use interesting concepts which are not fully considered in

software models to now. The Hippocampus, for example, is a part of the human brain that

filters information by their importance and meaning [281]. In form of Priorities, a similar

mechanism is already used by Operating Systems (OS). It is to be investigated in how far

these filter mechanisms are suitable for handling general Security issues in software systems.

After all, software can only be as good as the models behind it. CYBOP’s principles base on

phenomenons of nature. Structures and their relations in space, time and further dimensions

can only be implemented as well as they are currently known. It will be the task of natural

sciences, philosophy, psychology and other fields to steadily improve their concepts so that

software modelling can continue to learn from them.

The Applicability of CYBOP in Low-Level Systems The focus of CYBOP is standard

business application development. Knowledge provided in form of CYBOL templates has a

rather high abstraction level. It would be interesting to know in how far CYBOP concepts,

the CYBOL language and the CYBOI interpreter are applicable in the development of Real

Time (RT) systems, of control units in Automation Engineering (AE), and others more.

Surely, CYBOI’s signal scheduling mechanism would have to be touched in such an investi-

gation. In addition to the position property of a logic compound model’s part, being used to

place part signals in the correct order into the signal memory, a Timestamp (current time)

could be used for this. It could determine the scheduled execution time. Possibly, such a

timestamp could also serve as signal id.

In case CYBOI does not match RT requirements and -performance, at least CYBOL might

be suitable for representing configuration knowledge appropriately. This may also count for

the knowledge encoded by Hardware Description Languages (HDL).

384 13 Summary and Outlook

Standardised Knowledge Templates for Various Domains Much effort has to go into

the Standardisation of CYBOL templates for various domains such as Transport, Telecom-

munication or Healthcare. Actually, translator templates eliminate the need for a unification;

every state- or logic model template can be translated into any other. Nevertheless, it seems

very useful to provide internationally standardised model templates: They can serve as fo-

cal point, while developing a system. The more compliant different models are, the less

translating is needed for data interchange between applications. For the greater part, this

standardisation process has to be carried by domain experts; less by software specialists.

A closely related topic in this respect are Terminologies. Section 11.3.7 proposed to use

CYBOL for terminology modelling, because it allowed to add meta information as well as

to integrate constraints into its compositional structure. That way, problems like Nonsense

combinations (section 4.6.6) or Post-hoc Classification (unforeseeable addition of new, un-

known concepts that may prevent a meaningful data analysis) might be avoided. But this

surely has to be figured out in future research works.

Besides for domain models like an Electronic Health Record (EHR) [22] for medicine, knowl-

edge templates could also be defined for User Interfaces (UI), may they be textual, graphical

or for the World Wide Web (WWW). Another kind of standardised template could be one

for the creation of Requirements Analysis Documents. All templates would be exchangeable

and reusable.

One point deserving special attention, is the handling of Constraints in CYBOL templates.

Certainly, not all possible variants of constraints have been thought-out in this work. More

details are needed.

Towards a CYBOI-based Operating System The CYBOI interpreter serves as con-

nective link between CYBOL-encoded, passive application knowledge and its input/ output

(i/o) via an underlying Operating System (OS) with communication facilities. The more

low-level mechanisms CYBOI implements, the further it is developing towards becoming an

OS itself. One topic of research could thus be to figure out which of the typical OS features

[304, p. 80] are absolutely essential, and how these can be implemented into CYBOI.

Additionally, a number of questions are to be discussed. Is the Process concept- and are

Threads really the ideal solution for running different applications on one computer? Or, are

there ways to circumvent their usage and to base on just one signal-processing loop in the

system? What are the possible algorithms for signal selection [183, p. 101]? What effects

13.2 Future Works 385

would this have on security? If a system stores all knowledge of all applications running

in it in just one memory, how can be made sure that an application accesses only the

knowledge belonging to its scope? Apart from the Process concept, what other innovative

ideas can be delivered for this? Would it make sense to assign special Rights to branches of

the knowledge tree in memory? One possibility would be to always check the name of the

application sending a signal and then allow it to access its own knowledge resources only.

Another possibility could be to hold something like a resource access decision table in the

low-level system, where each application is assigned the knowledge resources it may access.

Further ideas are welcome and to be investigated.

In this context, how can concepts stemming from Network Operating Systems and Dis-

tributed Operating Systems [304, p. 16] be considered in CYBOI?

An OS does also contain configuration knowledge, such as the information whether or not a

certain device driver should be loaded on a machine. This knowledge can be stored in form

of CYBOL templates. Finally, the OS is nothing else than an application, only that it is

the one started first in a system. A corresponding Cybernetics Oriented Operating System

(CYBOS) could be created, whose structure and functionality are specified by CYBOL

templates.

In a similar manner, OS in use today may be equipped with knowledge-processing capabil-

ities. They would be the instance actively caring about low-level system control, as they

should do exclusively, anyway, and factor out all configuration information into special files

– or CYBOL templates. Further, hardware producers should be responsible for providing

an OS suiting- and controlling their hardware. These systems would have to be able to

handle well-specified knowledge, as in form of CYBOL templates, and hence be able to run

applications accordingly.

The first version of CYBOI was written in Java and therefore carried some overhead. A

second, much slimmer and more performant version (the current one) was written in the

more low-level system programming language C. It will have to be investigated if and which

parts of a third-version CYBOI could eventually be implemented in an Assembler language,

to further increase performance. First preparations were already done in the current, sec-

ond version: Only procedures, no functions were used; all parameters are handed over as

neutral void pointers; only one kind of loop (endless, with break condition) was applied.

Transformations into assembler code are thereby simplified. A fourth and final version of

CYBOI would be one being burnt into Hardware directly, similar to the Java Chips [196]

that people used to talk about some years ago.

386 13 Summary and Outlook

A Development Process embedding CYBOP Principles It would be interesting to

know how well the CYBOP principles fit into existing Software Engineering Processes (SEP),

like the ones mentioned in chapter 2. Probably, an own SEP called something like Cyber-

netics Oriented Methodology (CYBOM) will have to be developed for CYBOP.

abstraction

level

informal

semi-formal

formal

software

development

process

analysis design implementation

traditional

programming

cybernetics

oriented

programming

Figure 13.1: Comparison of a traditional SEP with CYBOM

Of special interest thereby is the missing implementation phase. Figure 13.1 shows a diagram

comparing a traditional- with a cybernetics-oriented SEP. While the traditional SEP has

to pass the three phases Analysis, Design and Implementation, CYBOM would stop at the

end of the design phase, because its architected knowledge templates already represent the

implementation, specified in a formal language – CYBOL.

However, the exact details are still Speculation. The figure is not based on research and just

a Guess how a CYBOM might shorten the SEP time and effort. Further investigation and

proof are needed. Also, it has to be figured out in how far missing CYBOI features have a

delaying influence, since CYBOL can only make use of functionality that is already provided

by CYBOI.

Strongly related with a CYBOM, is a plan for smoothly migrating systems that have been

developed using Structured- and Procedural Programming (SPP) or Object Oriented Pro-

gramming (OOP) techniques, to CYBOP. In conjunction with it, training methodologies,

tutorials etc. are to be created.

13.3 Fiction 387

CYBOP as Foundation for End User Development After [218], End User Development

(EUD) is: the collection of techniques and methodologies for the creation of non-trivial

software applications by domain experts. End Users, after the same source, are: individuals

who, although skilled in a task domain, lack the necessary computing skills or motivation

to harness traditional programming techniques in support of their work. Further on, [218]

states that:

End User Development (EUD) has been the holy grail of software tool devel-

opers since James Martin launched Fourth Generation Languages (4GL) in the

early eighties. Even though there has been considerable success in adaptive and

programmable applications, EUD has yet to become a mainstream competitor

in the software development market place. . . .

Today, there is increasing interest in the ability to rapidly evolve Information

Systems, in response to changing opportunities and threats, but traditional de-

velopment routes are prohibitively expensive. We believe that EUD techniques

could be the source of a solution to this problem, by supporting the efficient

development of flexible bespoke systems.

With CYBOL, this work claims to provide a language well-suitable for EUD. It is to be

figured out how far end-user participation using CYBOP for application development can

go. This could be done in form of case studies or the like.

13.3 Fiction

Lastly, there are some ideas which may seem a bit crazy or too fictionary for serious scientific

work, which is why they were put into this extra section.

Dimensions Time is usually expressed as scalar product of one quantity and one unit.

Space is represented by three such values. It would be interesting to know if Mass could

possibly fill the gap in this order and be the one to be measured in two values. Latest

research shows that Gravitation has probably a lot to do with Geometry. Why not so Mass

as part of the definition of Force?

Are there other dimensions, besides time and space, in this order?

388 13 Summary and Outlook

Structured DNA A Desoxy Ribo Nucleic Acid (DNA) molecule represents serialised

knowledge. If it was possible to bring structure into the sequence of chemical bases that the

DNA consists of, that is to recognise typical elements which all DNA strings contain (similar

to the special tokens in a markup language), a corresponding knowledge schema might get

created. One may assume that such a schema underlies each DNA molecule. It would help

identify the meaning of the single DNA elements (Genes).

Teleportation One dream of research is Beaming (Teleportation), that is the transfer of

matter in space. It seems very unlikely that big pieces of matter and their structures can be

transferred. Looking at current transfer mode systems, it is not matter but abstractions of it

which get transferred. Radio transfers acoustical signals; Television additional visual signals

and so on. The visual signals consist of sequences of images which are abstract illustrations

of some place or scene. These abstractions are transported in form of electromagnetic waves

and later displayed on a screen by either electrons (cathod ray tube) or thin film transistors.

Once again: not matter gets transferred but information.

Assuming that beaming really worked one day, it seems to become the easier part to build

a new body after the model encrypted in a transmitted human DNA. (This would be the

same as Cloning and in the same way, body damages could be repaired, too, which could

lead to neverending life.)

A physical Brain might get copied or transferred, but how much more difficult would this

be with the Knowledge contained in it? When building a body copy, billions of Neurons

and their weighted Connections have to be duplicated identically. It is still not clear if the

Mind/ Character/ Personality would then really be preserved.

For both problems (transfer of Brain and Mind), Abstractions are essential. They are a

precondition for beaming to function correctly. The DNA represents the model of the body,

abstracted to a chain of Key-Value Pairs. The Neurons and their connections as Network

of Weights stand for the mind. If body and mind can be abstracted in complete, with no

information-loss, direct knowledge exchange between human brains becomes possible. Also,

body and mind can be stored in form of models, for a longer period of time.

14 Appendices

14.1 Abbreviations

3GL Third Generation Language

4GL Fourth Generation Language

AAFP American Academy of Family Physicians

AAP American Academy of Pediatrics

ABDA Bundesvereinigung Deutscher Apotheker Verbände

ACID Atomicity, Consistency, Isolation, Durability

ACL Access Control List

ACL Agent Communication Language

ACM Association for Computing Machinery

ACR American College of Radiology

AD Activity Diagram

ADA American Dental Association

ADL Archetype Definition Language

ADL Architecture Description Language

ADO ActiveX Data Object

ADT Abrechnungs DT

AE Application Engineering

AE Automation Engineering

AGOP Agent Oriented Programming

AI Artificial Intelligence

ALU Arithmetic Logic Unit

AM Archetype Model

AMA American Medical Association

390 14 Appendices

AMR Automated Medical Record

ANN Artificial Neural Network

ANSI American National Standards Institute

AODT Ambulant Operieren DT

AOP Aspect Oriented Programming

AOSD Aspect Oriented SD

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASD Adaptive Software Development

ASIC Application Specific IC

ASTM American Society for Testing and Materials

AWT Abstract Window Toolkit

B2B Business to Business

BASIC Beginners All purpose Symbolic Instruction Code

B.C. before Christ

BDT Behandlungs DT

BeOS Be, Inc. OS

BIOS Basic I/O System

Bit Binary Digit

BLOB Binary LOB

BMC BioMed Central

BNF Backus Naur Form

BO Business Object

BSD Berkeley Software (System) Distribution (Design)

c/s client/ server

CAD Computer Aided Design

cADL Constraint Form of ADL

CAM Computer Aided Manufacturing

CAP College of American Pathologists

CASE Computer Aided Software Engineering

CBD Component Based Design (Development)

CCR Continuity of Care Record

CD Communication Diagram

CDA Clinical Document Architecture

CDISC Clinical Data Interchange Standards Consortium

14.1 Abbreviations 391

CEN Comite Europeen de Normalisation

(European Committee for Standardisation)

CENELEC CEN Electrotechnique

(European Committee for Electrotechnical Standardisation)

CERN Conseil Europeen pour le Recherche Nucleaire

CGI Common Gateway Interface

CIAS Clinical Image Access Service

CICS Customer Information Control System

CII Computer Implemented Inventions

CISC Complex Instruction Set Computing

CL Common Lisp

CLOS Common Lisp Object System

CLSI Clinical and Laboratory Standards Institute

CmD Component Diagram

CMET Common Message Element Type

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMR Computerised Medical Record

CNS Central NS

COAS Clinical Observations Access Service

COBOL Common Business Oriented Language

CoD Communication (Collaboration) Diagram

COM Component Object Model

COP Component Oriented Programming

CORBA Common ORB Architecture

CP/M Control Program for Microprocessors

(Control Program/ Monitor)

CPR Computer-based Patient Record

(Computerised Patient Record)

CPU Central Processing Unit

CR CEN Report

CRC Class, Responsibilities, Collaborations

CRM Common Reference Model

CsD Class Diagram

CSD Composite Structure Diagram

392 14 Appendices

CSS Cascading Style Sheet

CSV Comma Separated Variable

CT Computer Tomograph

CTV3 Clinical Terms Version 3

CVS Concurrent Versions System

CWM Common Warehouse Metamodel

CYBOI Cybernetics Oriented Interpreter

CYBOL Cybernetics Oriented Language

CYBOM Cybernetics Oriented Methodology

CYBOP Cybernetics Oriented Programming

CYBORG Cybernetic Organism

CYBOS Cybernetics Oriented Operating System

dADL Data Definition Form of ADL

DAG Directed Acyclic Graph

DAML DARPA Agent ML

DAO Data Access Object

DARPA Defense Advanced Research Projects Agency

DB Database

DB2 DB 2

DBMS DB Management System

DCC Direct Client to Client Protocol

DCD Document Content Description

DCE Distributed Computing Environment

DCL Data Control Language

DCOM Distributed COM

DD Deployment Diagram

DDE Dynamic Data Exchange

DDL Data Definition Language

DE Domain Engineering

DEB Debian GNU/Linux Package

DHTML Dynamic HTML

DICOM Digital Imaging and Communications in Medicine

DIF Data Interchange Format

DIMDI Deutsches Institut für Medizinische Dokumentation

und Information

14.1 Abbreviations 393

DIMSE DICOM Message Service Element

DIN Deutsches Institut für Normung

DLL Dynamic Link Library

DML Data Manipulation Language

DMP Disease Management Programme

DMR Digital Medical Record

DNA Desoxy Ribo Nucleic Acid

DNS Domain Name Service

(Domain Name System)

DOM Document Object Model

DOS Disk OS

DPMI DOS Protected Mode Interface

DSDM Dynamic System Development Method

DSL Domain Specific Language

DSOM Distributed System Object Model

DSP Digital Signal Processor

DSSSL Document Style Semantics and Specification Language

DT Datenträger

DTD Document Type Definition

DTO Data Transfer Object

DVI Device Independent

e.g. exempli gratia (for example)

EAA Enterprise Application Architecture

EBES European Board of EDI Standardisation

EBNF Extended BNF

EC Existential Conjunctive

ECC Error Correction Code

(Error Checking and Correction)

ECML Electronic Commerce Modeling Language

EDI Electronic Data Interchange

EDIF EDI Format

EDIFACT EDI for Administration, Commerce and Transport

EDP Electronic Data Processing

EEG EBES Expert Group

EEPROM Electrically Erasable Programmable ROM

394 14 Appendices

EET Encyclopedia of Educational Technology

eHC Electronic Health Card

EHCR Electronic Health Care Record

EHR Electronic Health Record

EHRcom EHR Communications

EIA Electronic Industries Alliance

EIR Electronic Insurance Record

EJB Enterprise Java Bean

EMI Electronic Medical Infrastructure

EMR Electronic Medical Record

EN European Standard

ENV European Prestandard

EPR Electronic Patient Record

EPS Encapsulated PS

ER Endoplasmic Reticulum

ERD Entity Relationship Diagram

ERM Entity Relationship Model

ERP Enterprise Resource Planning

et al. et alii (and others)

etc. et cetera (and so on)

EU European Union

EUD End User Development

Extended ML Extended Meta Language

FAQ Frequently Asked Question

FDD Feature Driven Development

FDDI Fiber Distributed Data Interface

FDL Free Documentation License

FeatuRSEB Feature RSEB

FHS Filesystem Hierarchy Standard

FIFO First In, First Out

FLOSS Free/ Libre OSS

FODA Feature Oriented Domain Analysis

FOLDOC Free On-line Dictionary of Computing

FOPL First Order Predicate Logic

FORE Family Oriented Requirements Engineering

14.1 Abbreviations 395

FOSS Free and OSS

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FQN Fully Qualified Name

FR Frame Relay

FSF Free Software Foundation

FTP File Transfer Protocol

GALEN Generalised Architecture for Languages,

Encyclopaedias and Nomenclatures in Medicine

GC Garbage Collector

GCC GNUCompiler Collection

(GNU CCompiler)

GDI Graphics Device Interface

GDT Geräte DT

GEHR Good European/ EHR

GIF Graphics Interchange Format

GIMP General (GNU) Image Manipulation Program

GMDN Global Medical Device Nomenclature

GNOME GNU Network Object Model Environment

GNU GNU is not UNIX

GoF Gang of Four

GP Generative Programming

GP General Practitioner

GPF General Protection Fault

GPIC General Purpose Information Component

GPL General Public License

GPL General Purpose Language

GRAIL GALEN Representation and Integration Language

GTK GIMP Toolkit

GUI Graphical UI

GUID Globally Unique ID

h/w Hardware

HAL Hardware Abstraction Layer

HCI Human-Computer Interaction

HD Harmonisation Document

396 14 Appendices

HDD Hard Disk Drive

HDL Hardware Description Language

HDTF Healthcare Domain Task Force

HIMSS Health Information Management and Systems Society

HIS Hospital Information System

HL7 Health Level Seven

HMVC Hierarchical MVC

HOWTO How To? (Subject Specific Help)

HP Hewlett Packard

HPC Health Professional Card

HPTC High Performance Technical Computing

HTML Hypertext ML

HTTP Hypertext Transfer Protocol

HTTPD HTTP Daemon

HW Hardware

HXP Healthcare Xchange Protocol

i/e import/ export

i/o input/ output

i/p input

IABG Industrieanlagen-Betriebsgesellschaft

IBM International Business Machines

IC Integrated Circuit

ICANN Internet Corporation for Assigned Names and Numbers

ICD International Classification of Diseases

ICF International Classification of Functioning,

Disability and Health

ICHPPC International Classification of Health Problems

in Primary Care

ICN International Council of Nurses

ICNP International Classification for Nursing Practice

(Procedures)

ICQ I seek you

ICR Integrated Care Record

ICPC International Classification of Primary Care

ID Identifier

14.1 Abbreviations 397

IDE Integrated Development Environment

IDL Interface Definition Language

i.e. id est (that is)

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IIM Internet Interaction Management

IIOP Internet Inter ORB Protocol

IIS Internet Information Server

IMAP Internet Message Access Protocol

Inc. Incorporated

InterNIC Internet Network Information Center

IoC Inversion of Control

IOD Interaction Overview Diagram

IP Internet Protocol

IPC Inter-Process Communication

IPv6 Internet Protocol (Version 6)

IPX Internet Packet Exchange

IRC Internet Relay Chat

IRQ Interrupt Request

IS International Standard

ISA Instruction Set Architecture

ISO International Organization for Standardization

ISP Internet Service Provider

IST Information Science Technology

IT Information Technology

ITU International Telecommunication Union

J2EE Java 2 Platform Enterprise Edition

JAR Java Archive

JDBC Java DB Connectivity

JDK Java Development Kit

JEDEC Joint Electron Device Engineering Council

JFC Java Foundation Classes

JMS Java Message Service

JNDI Java Naming and Directory Interface

JNI Java Native Interface

398 14 Appendices

JOSMC Journal of Free and Open Source Medical Computing

JPEG Joint Photographic Experts Group

JPM Join Point Model

JSP Java Server Pages

JTS Java Transaction Service

JVM Java VM

KBV Kassenärztliche Bundesvereinigung

KDE K Desktop Environment

KDT Kommunikations DT

KE Knowledge Engineering

KIF Knowledge Interchange Format

KQML Knowledge Query and Manipulation Language

KV Kassenärztliche Vereinigung

KVDT KV DT

LAN Local Area Network

LaTeX Lamport TeX

LDR Lifetime Data Repository

LDT Labor DT

LGPL Lesser GPL

LIFO Last In, First Out

LILO Linux Loader

LOB Large Object

LOINC Logical Observation Identifiers, Names and Codes

LQS Lexicon (Terminology) Query Service

LTM Long Term Memory

MAPI Message Application Programming Interface

MAS Multi Agent System

MathML Mathematical ML

MATLAB Matrix Laboratory

MBR Master Boot Record

MD Model Diagram

MD Medical Doctor

MDA Model Driven Architecture

MDI Multiple Document Interface

MeSH Medical Subject Headings

14.1 Abbreviations 399

MFC MS Foundation Classes

MIF Management Information Format

MIME Multipurpose Internet Mail Extension

MIS Management Information System

MIT Massachusetts Institute of Technology

ML Markup Language

MMS Massachusetts Medical Society

MMU Memory Management Unit

MOF Meta Object Facility

MOP Meta Object Protocol

MPEG Moving Picture Experts Group

(Motion Picture Expert Group)

MPI Message Passing Interface

MRPT Management Resource Planning Tool

MS Microsoft

MTU Maximum Transmission Unit

Mutex Mutual Exclusion

MVC Model View Controller

MVS Multiple Virtual Storage

n/a not applicable

NC Network Computer

NCCLS National Committee for Clinical Laboratory Standards

NCPDP National Council for Prescription Drug Programs

NEMA National Electrical Manufacturers Association

NetBIOS Network BIOS

NetDDE Network DDE

NHS National Health Service

NHSIA NHS Information Authority

NIST National Institute of Standards and Technology

NLM National Library of Medicine

NNTP Network News Transfer Protocol

NOS Network OS

NPO Non-Profit Organisation

NS Nervous System

NSF National Science Foundation

400 14 Appendices

NSP Network Service Provider

o/p output

OASIS Organization for the Advancement of

Structured Information Standards

ObD Object (Instance) Diagram

OCL Object Constraint Language

OCX OLE Custom Control

OD Organisation Diagram

ODBC Open DB Connectivity

ODI Open Datalink Interface

ODL Object Description Language

ODM Operational Data Modeling

OFFIS Oldenburger Forschungs- und Entwicklungsinstitut

für Informatik-Werkzeuge und -Systeme

OGG Ogg Vorbis Audio Encoding and Streaming Technology

OID Object ID

OIM Open Information Model

OIO Open Infrastructure for Outcomes

OLE Object Linking and Embedding

OM Object Model

OMA Object Management Architecture

OMG Object Management Group

OMS Object Model System

OO Object Oriented

(Object Orientation)

OOA OO Analysis

OOD OO Design

OODBMS OO DBMS

OOM OO Model

OOP OO Programming

OOPS OO Programming System

OPCS Office of Population Censuses and Surveys

Classification of Surgical Operations and Procedures

OPD Object Process Diagram

OpenEHR Open EHR

14.1 Abbreviations 401

OPS Official Production System

OQL Object Query Language

ORB Object Request Broker

ORDBMS Object Relational DBMS

OS Operating System

OSCAR Open Source Clinical Application Resource

OSDN Open Source Development Network

OSF Open Software Foundation

OSHCA Open Source Health Care Alliance

OSI Open Source Initiative

OSI Open Systems Interconnection

OSS Open Source Software

OTW Object Technology Workbench

OWiS Objektorientierte und Wissensbasierte Systeme

OWL Web Ontology Language

OXMIS Oxford Medical Information System

P2P Peer to Peer

(Person-to-Person, Program-to-Program)

PAN Personal Area Network

PAP Password Authentication Protocol

PC Personal Computer

PCL Printer Control Language

PCMCIA PC Memory Card International Association

PCR Patient Carried Record

PD Package Diagram

PDA Personal Digital Assistant

PDF Portable Document Format

PDL Page Description Language

Perl Practical Extraction and Report Language

PGP Pretty Good Privacy

PhD Philosophiae Doctor

PHP PHP Hypertext Preprocessor

(Personal Home Page)

PHP Personal Health Project

PHR Personal Health Record

402 14 Appendices

PIC Programmable Interrupt Controller

PIDS Person (Patient) Identification Service

PIM Platform Independent Model

PIM Personal Information Manager

PIN Personal Identification Number

PIO Programmed Input Output

Pixel Picture Element

PK Public Key

PKI PK Infrastructure

PL/1 Programming Language One

PLD Programmable Logic Device

PMR Patient Medical Record

PMS Practice Management System

PNG Portable Network Graphics

PnP Plug and Play

PNS Peripheral NS

POA Portable Object Adapter

POL Problem Oriented Language

POMR Problem Oriented Medical Record

POP Post Office Protocol

POSIX Portable OS Interface for UNIX

PPC Power PC

PPP Point-to-Point Protocol

Prolog Programmation en Logique

PS PostScript

PSM Platform Specific Model

QMS Qualitätsring Medizinische Software

QoS Quality of Service

Qt Cute C++ Toolkit

RADS Resource Access Decision Service

RAM Random Access Memory

RAS Remote Access Service

RAS Reliability, Availability, Serviceability

RDBMS Relational DBMS

RDF Resource Description Framework

14.1 Abbreviations 403

READ Read Codes

RFC Request for Comment

RFP Request for Proposal

RIM Reference Information Model

RISC Reduced Instruction Set Computing

RKI Robert Koch Institut

RM Reference Model

RMI Remote Method Invocation

RMIM Refined Message Information Model

RNA Ribo Nucleic Acid

ROM Read Only Memory

RPC Remote Procedure Call

RPM RPM/ Red Hat Package Manager

RSEB Reuse driven Software Engineering Business

RT Real Time

RTE Roundtrip Engineering

RTF Rich Text Format

RTTI Run Time Type Identification

RUP Rational Unified Process

S/MIME Secure MIME

s/w software

SAS Statistical Analysis System

SAX Simple API for XML

SC Subcommittee

SCD State Chart Diagram

SCDI Standards Committee on Dental Informatics

SCIPHOX Standardisation of Communication between Information

Systems in Physician’s Offices and Hospitals using XML

SD Software Development

SD Sequence Diagram

SDK System Development Kit

SDL Specification and Description Language

SDM Submission Data Modeling

SDO Standards Development Organisation

SEP Software Engineering Process

404 14 Appendices

SEQUEL Structured English Query Language

SET Secure Electronic Transaction

SG Secretary General

SGI Silicon Graphics, Inc.

SGML Standard Generalized ML

SHTTP Secure HTTP

SID Security ID

SIG Special Interest Group

SL Specification Language

SLIP Serial Line Internet Protocol

SMB Server Message Block

SMD State Machine (Chart) Diagram

SME Small- and Medium Sized Enterprise

SMIF Stream based Model Interchange Format

SMP Symmetric Multiprocessing

(Shared Memory Processing)

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SNOMED Systematized Nomenclature of Medicine

SNOMED CT SNOMED Clinical Terms

SNOMED RT SNOMED Reference Terminology

SNR Signal to Noise Ratio

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOAP Subjective, Objective, Assessment, Plan

SoC Separation of Concerns

SOP Script Oriented Programming

SOX Schema for Object Oriented XML

SPID Service Profile (Provider) ID

SPL Special Purpose Language

SPP Structured and Procedural Programming

SPX Sequence Package Exchange

SQL Structured Query Language

SSI Server Side Include

SSL Secure Socket Layer

14.1 Abbreviations 405

STL Standard Template Library

STM Short Term Memory

SVG Scalable Vector Graphics

SW Software

SynEx Synergy on the Extranet

SYSOP System Operator

tADL Template Form of ADL

TC Technical Committee

Tcl Tool command language

TCP Transfer (Transport, Transmission) Control Protocol

TD Template Diagram

TEI Text Encoding Initiative

Telnet Telephone Network

TiD Timing Diagram

TIFF Tagged Image File Format

Tk Toolkit

tkFP Tcl/Tk Family Practice

TLD Top Level Domain

TLDP The Linux Documentation Project

TP4 Transport Protocol Class 4

TPM Third Party Maintenance

TR Technical Report

TS Technical Specification

TTF True Type Font

TUG TeX Users Group

TUI Technical University of Ilmenau

TUI Textual UI

TXT Text

UCD Use Case Diagram

UDP User Datagram Protocol

UI User Interface

UIML UI ML

UIN Universal Internet Number

UK United Kingdom

UMDNS Universal Medical Device Nomenclature System

406 14 Appendices

UML Unified Modeling Language

UMLS Unified Medical Language System

UMLSKS UMLS Knowledge Source Server

UN United Nations

UNC Universal Naming Convention

UNICODE Universal, Unique, Uniform Character Set Standard

UNIX Universal Interactive Executive

(Uniplexed Information and Computing System)

UNO Universal Network Objects

URI Uniform Resource Indicator

URIref URI reference

URL Uniform Resource Locator

US United States

USA US of America

USB Universal Serial Bus

USENET User Network

USR US Robotics

UUCP UNIX to UNIX Copy

UUENCODE UNIX to UNIX Encode

UUID Universally Unique ID

VB Visual Basic

VCL Visual Component Library

VDAP Verband Deutscher Arztpraxis Softwarehersteller

VDM Vienna Development Method

VHDL VHSIC HDL

VHitG Verband der Hersteller von IT Lösungen

für das Gesundheitswesen

VHR Virtual Health Record

VHSIC Very High Speed IC

VistA Veterans Health Information Systems

and Technology Architecture

VLAN Virtual LAN

VM Virtual Machine

VMM Virtual Memory Manager

Voxel Volume Element

14.1 Abbreviations 407

VPN Virtual Private Network

VPR Virtual Patient Record

VR Virtual Reality

vs. versus (against)

VSA Virtual Storage Architecture

VSAM Virtual Storage Access Method

W3 WWW

W3C W3 Consortium

WAIS Wide Area Information Server

WAN Wide Area Network

WAP Wireless Application (Access) Protocol

WAR Web Archive

WCS World Coordinate System

WD Working Document

WG Working Group

WHO World Health Organisation

WI Work Item

WIMP Windows, Icons, Menus, Pointing

(Windows, Icons, Mouse, Pull-down Menus)

WINSOCK Windows Socket

WINTEL Windows/ Intel

WUI Web UI

WWW World Wide Web

WYSIWYG What You See Is What You Get

WYSIWYP What You See Is What You Print

X X Window System

XAML Extensible Application ML

xDT x DT

XHTML Extensible HTML

Xlibs X Libraries

XMI XML Metadata Interchange

XML Extensible ML

XP Extreme Programming

XPath XML Path Language

XSD XML Schema Definition

408 14 Appendices

XSL Extensible Stylesheet Language

XSL-FO XSL Formatting Objects

XSLT XSL Transformations

XUL XML UI Language (XUL)

YACC Yet Another Compiler Compiler

ZI Zentralinstitut für die Kassenärztliche Versorgung

14.2 References 409

14.2 References

[1] Dragos Acostachioaie. Doc++ documentation system for c, c++, idl and java, De-

cember 2002. http://docpp.sourceforge.net/.

[2] Canoo Engineering AG. Woerterbuecher und grammatik fuer deutsch. Internet Portal,

2004. http://www.canoo.net.

[3] Christopher Alexander, Sara Ishikawa, Muray Silverstein, and et al. A Pattern Lan-

guage: Towns, Buildings, Construction. Oxford University Press, New York, 1977.

https://www.patternlanguage.com/cgi-bin/patternl/order.py.

[4] The Agile Alliance. To satisfy the customer through early and continuous delivery of

valuable software. Website, 2004. http://www.agilealliance.org.

[5] Scott W. Ambler. The design of a robust persistence layer for relational databases. On-

line White Paper, November 2000. http://www.ambysoft.com/persistenceLayer.html.

[6] Scott W. Ambler. The diagrams of uml 2.0. Agile Modeling Essay, March 2005.

http://www.agilemodeling.com/essays/umlDiagrams.htm.

[7] APCB and the Z User Group. 4th international conference of b and z users. Website,

November 2004. http://www.zb2005.org/.

[8] Gerardo Arnaez. Linux medicine-howto. HOWTO Document, March 2004.

http://en.tldp.org/HOWTO/Medicine-HOWTO/.

[9] William (Bill) A. Arnett. The nine planets: A multimedia tour of the solar system,

February 2005. http://www.nineplanets.org/.

[10] G. Arrango. Domain analysis methods. In Schaefer, R. Prieto-Diaz, and M. Mat-

sumoto, editors, Software Reusability, pages 17–49. Ellis Horwood, New York, 1994.

[11] Tom Atwood. Vertical and horizontal computing architec-

tures – trends and attributes. Whitepaper, Enterprise Systems

Products, Sun Microsystems, Inc., SUPerG Berlin, May 2003.

http://www.sun.com/datacenter/superg/docs/Atwood SUPerG Berlin.pdf.

[12] Various Authors. Debian developers mailing list, 2004-2005. debian-

devel@lists.debian.org.

[13] John Backus, Peter Naur, and et al. Revised report on the algorithmic language

algol 60. In Peter Naur, editor, Communications of the ACM, volume 3, no. 5, pages

299–314, May 1960. http://www.masswerk.at/algol60/report.htm.

410 14 Appendices

[14] Helmut Balzert. Lehrbuch der Software-Technik, volume Software-Entwicklung, no. 1

of Lehrbuecher der Informatik. Spektrum, Heidelberg, 2 edition, 2000. ISBN 3-8274-

0480-2.

[15] Subhashis Banerjee. Csl102: Introduction to computer science. Online Lecture Notes,

2004. http://www.cse.iitd.ernet.in/ suban/CSL102/history.html.

[16] Martha Argentina Barberena Najarro. Visualisierung von Informationsraeu-

men. PhD thesis, Technical University of Ilmenau, Ilmenau, June 2003.

http://www.bibliothek.tu-ilmenau.de/elektr medien/dissertationen/2003/Barberena

Najarro Martha/index.html.

[17] Federico Barbieri, Stefano Mazzocchi, and Pierpaolo Fumagalli. Apache Jakarta

Avalon Framework. Apache Project, 2002. http://avalon.apache.org/.

[18] Thomas Beale. Archetypes: Constraint-based Domain Models for Future-proof Infor-

mation Systems. Open Electronic Health Record (OpenEHR), 2.2.1 edition, August

2001. http://www.deepthought.com.au/it/archetypes/archetypes.pdf.

[19] Thomas Beale and et al. Openehr technical mailing list, 2002-2004. openehr-

technical@openehr.org.

[20] Thomas Beale, A. Goodchild, and Sam Heard. Design Principles for

the EHR. Open Electronic Health Record (OpenEHR), 2.4 edition, 2002.

http://www.openehr.org/Doc html/Model/Principles/design principles.htm.

[21] Thomas Beale and Sam Heard. Archetype Definition Language (ADL). The

openEHR Foundation, release 1.0 draft, revision 2.0rc1 edition, Septem-

ber 2005. http://svn.openehr.org/specification/BRANCHES/Release-1.0-

candidate/publishing/index.html.

[22] Thomas Beale, Sam Heard, and et al. Open electronic health record (openehr)

project, formerly good european/ electronic health record (gehr), April 2005.

http://www.openehr.org.

[23] Dirk Behrendt. Erstellen eines backup-moduls unter verwendung gaengiger design

patterns aus dem resmedlib framework. Student project (studienarbeit), Technical

University of Ilmenau, Ilmenau, January 2003. http://www.cybop.net.

[24] David Belton. Boolean algebra. Website, April 1998.

http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/.

[25] Michael Benedikt. Cyberspace: Some proposals. In Cyberspace: First Steps, pages

119–224. MIT Press, Cambridge, MA, USA, 1991.

14.2 References 411

[26] Jon Bentley. Perlen der Programmierkunst. Programming Pearls. Addison-Wesley,

http://www.aw.com, Boston, Muenchen, 2000.

[27] Ambrose Bierce. The Devil’s Dictionary. Albert and Charles

Boni, Inc., internet wiretap 1st online edition, April 1993.

http://wiretap.area.com/Gopher/Library/Classic/devils.txt.

[28] Remigiusz Bierzanek and Janusz Symonides. Prawo Miedzynarodowe Publiczne (cit-

ing S. E. Nahlik). Wydawnictwa Prawnicze (PWN), Warszawa, 5th edition, 1999.

http://www.wp-pwn.com.pl.

[29] Java Blueprints.

[30] Kai Boellert. Objektorientierte Entwicklung von Software-Produktlinien

zur Serienfertigung von Software-Systemen. PhD thesis, Technical Uni-

versity of Ilmenau, Ilmenau, January 2002. http://www.bibliothek.tu-

ilmenau.de/elektr medien/dissertationen/2003/Boellert Kai/index.html.

[31] Jens Bohl. Moeglichkeiten der gestaltung flexibler software-architekturen fuer praesen-

tationsschichten, dargestellt anhand episodenbasierter, medizinischer dokumentation

unter einbeziehung topologischer befundung. Master’s thesis (diplomarbeit), Technical

University of Ilmenau, Ilmenau, January 2003. http://www.cybop.net.

[32] G. Booch, J. Rumbaugh, and I. Jacobson. Das UML-Benutzerhandbuch. Addison-

Wesley, Bonn, 1999. Original: The Unified Modeling User Guide.

[33] Jonathan Bowen and et al. The z notation, November 2004.

http://www.afm.sbu.ac.uk/z/.

[34] Tim Bray, Charles Frankston, and Ashok Malhotra. Document Content Descrip-

tion (DCD). World Wide Web Consortium (W3C), submission edition, July 1998.

http://www.w3.org/TR/NOTE-dcd.

[35] Alan Brown. An introduction to model driven architecture – part i: Mda and today’s

systems. Technical report, Inc., International Business Machines, Developerworks,

January 2004. http://www-106.ibm.com/developerworks/rational/library/3100.html.

[36] Alan W. Brown. Large-Scale, Component-Based Development. Object and Component

Technology Series. Prentice Hall PTR, London, Sydney, 2000. http://www.phptr.com.

[37] Christopher B. Browne. Alternatives to corba. Home Page, 2004.

http://cbbrowne.com/info/corbaalternatives.html.

[38] Eric Browne. The myth of self-describing xml, September 2003.

http://www.OceanInformatics.biz/publications/e2.pdf.

412 14 Appendices

[39] Andreas Buesch. Vorlesung medienpaedagogik & kommunikationswissenschaft i.

PDF Document, Katholische Fachhochschule Mainz, June 2003. http://www.kfh-

mainz.de/downloads/sasp/buesch/.

[40] Rainer S. Burkhardt. UML – Unified Modeling Language: Objektorientierte Model-

lierung fuer die Praxis. Programmer’s Choice. Addison-Wesley, 2nd edition, March

1999. http://www.addison-wesley.de.

[41] Frank Buschmann, Regine Meunier, Hans Rohnert, and et al. Pattern-orientierte

Softwarearchitektur. Ein Pattern-System. Addison-Wesley, Bonn, Boston, Muenchen,

1. korr. nachdruck 2000 edition, 1998. http://www.aw.com/.

[42] Jennifer Bush. Open source software: Just what the doctor or-

dered? Family Practice Management, 10(6):65–69, June 2003.

http://www.aafp.org/fpm/20030600/65open.html.

[43] Jason Cai, Ranjit Kapila, and Gaurav Pal. Hmvc: The layered pattern

for developing strong client tiers. Java World Online Magazine, July 2000.

http://www.javaworld.com/javaworld/jw-07-2000/.

[44] Software Engineering Institute Carnegie Mellon University. Domain engineer-

ing: A model-based approach. Website containing technical Reports, 2003.

http://www.sei.cmu.edu/domain-engineering/domain engineering.html.

[45] Software Engineering Institute Carnegie Mellon University. Capability maturity model

for software (sw-cmm) and capability maturity model integration (cmmi). Website

containing technical Reports, July 2004. http://www.sei.cmu.edu/cmmi/.

[46] Software Engineering Institute Carnegie Mellon University. Feature-oriented do-

main analysis (foda). Website containing technical Reports, August 2004.

http://www.sei.cmu.edu/domain-engineering/FODA.html.

[47] Robert Todd Carroll, editor. Skeptic’s Dictionary. John Wiley & Sons, August 2003.

http://skepdic.com/.

[48] Chaos Computer Club (CCC). Europe’s largest hacker group, 2004.

http://www.wauland.de/datagarden.html.

[49] Clinical Data Interchange Standards Consortium (CDISC). Standards with focus on

the global, platform-independent exchange of various data. Standardisation Effort,

July 2005. http://www.cdisc.org/.

[50] CEN Technical Committee 251 (CEN/TC251). European standardization of health

informatics. TC Documents, 2004. http://www.centc251.org/.

14.2 References 413

[51] Technische Universitaet Chemnitz. Dictionary. Free Online German-English Dictio-

nary. http://dict.tu-chemnitz.de/.

[52] Eric H. Chudler. Adventures in neuroanatomy: Parts of the nervous system. Neuro-

science for Kids, December 2004. http://faculty.washington.edu/chudler/introb.html.

[53] P. Clements. A survey of architecture description languages. In 8th International

Workshop in Software Specification and Design, Germany, 1996.

[54] Clinical and Laboratory Standards Institute (CLSI) formerly National Commit-

tee for Clinical Laboratory Standards (NCCLS). Consensus documents and guide-

lines for clinical laboratory testing and -systems. Standardisation Effort, July 2005.

http://www.clsi.org/.

[55] Edgar F. (Ted) Codd. A relational model of data for large shared data banks. Commu-

nications of the Association for Computing Machinery (ACM), 13(6):377–387, June

1970. http://www.acm.org/classics/nov95/toc.html.

[56] Codehaus. Pico container, 2003-2004. http://www.picocontainer.org/.

[57] OASIS UIML Technical Committee. User interface markup language (uiml). Specifi-

cation, 1999-2004. http://www.uiml.org/.

[58] The XFree86 Developers Community. Xfree86 – the open source x window system,

June 2004. http://www.xfree86.org/.

[59] SynEx Consortium. Synergy on the extranet (synex), successor of the synapses project.

EU-sponsored Project, October 2000. http://www.gesi.it/synex/suite.htm.

[60] Collaborating contributors from around the world. Wikipedia – the free encyclopedia.

Web Encyclopedia, October 2004. http://www.wikipedia.org.

[61] Tim Cook and et al. Torch project (formerly: Freepm), 1999-2004.

[62] J. O. Coplien. Advanced C++ – Programming Styles and Idioms. Addison-Wesley,

Bonn, Boston, Muenchen, 1992.

[63] Borland Software Corporation. Delphi language and kylix/ delphi integrated develop-

ment environment, November 2004. http://www.borland.de/kylix/.

[64] Microsoft Corporation. Visual basic language and integrated development environ-

ment, November 2004. http://msdn.microsoft.com/vbasic/.

[65] Robin Cover. Xml and semantic transparency. Technical report, Cover Pages hosted

by OASIS, November 1998. http://xml.coverpages.org/xmlAndSemantics.html.

414 14 Appendices

[66] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Prin-

ciples and Techniques of Software Engineering based on automated Configuration

and Fragment-based Component Models. Addison-Wesley, Boston, Muenchen, 2000.

http://www.aw.com.

[67] Bernd Daene. Personal talk, September 2004.

[68] Stephen H. Daniel. Notes for ontology i: Dualism & behaviorism. Lecture Notes,

2003. http://www-phil.tamu.edu/ sdaniel/Notes/dualism.html.

[69] Andrew Davidson, Matthew Fuchs, and et al. Schema for Object Oriented

XML (SOX). World Wide Web Consortium (W3C), 2.0 edition, July 1999.

http://www.w3.org/TR/NOTE-SOX/.

[70] L.L.C. dbXML Group. dbxml (native xml database), 2004.

http://www.dbxml.com/product.html.

[71] Wissenschaftlicher Rat der Dudenredaktion: Guenther Drosdowski ..., editor. Der

Duden: in 12 Baenden; das Standardwerk zur deutschen Sprache, volume Duden,

Rechtschreibung der deutschen Sprache. Dudenverlag, Mannheim; Leipzig; Wien;

Zuerich, 21st edition, 1996. http://www.duden.de/.

[72] Bereich Informatik der Technischen Universitaet Muenchen. Leo dictionary. Free

Online German-English Dictionary. http://dict.leo.org/.

[73] Design Matrix – Systems and Product Design,

http://www.designmatrix.com/bionics/. Design Matrix.

[74] Doulos Ltd. Doulos Golden Reference Guides (GRG), 2004.

http://www.doulos.com/de/grg de/.

[75] Gert Egle. Fachbereich deutsch / linguistik. teachSam Bildungsserver, 2000.

http://www.teachsam.de/deutsch/d lingu/lin0.htm.

[76] Task Force EHRCOM. Ehrcom pren 13606-1 – 2nd working draft. Work-

ing Draft 1.2, Swedish Standards Institute (SIS), Stockholm, March 2004.

http://www.centc251.org/TCMeet/doclist/TCdoc04/N04-012prEN13606-

1 2WD.pdf.

[77] Albert Einstein. Ueber die spezielle und die allgemeine Relativitaetstheorie. Vieweg,

Wiesbaden, 1992. http://www.einstein-website.de.

[78] Chris Eliasmith, editor. Dictionary of Philosophy of Mind (PoM). De-

partment of Philosophy, Washington University, St. Louis, May 2004.

http://www.artsci.wustl.edu/ philos/MindDict/.

14.2 References 415

[79] Information Technology for European Advancement (ITEA) Project 99005

Eureka! 2023 Programme. Engineering software architectures, pro-

cesses and platforms for system families (esaps), September 2001.

http://www.esi.es/en/Projects/esaps/overview.html.

[80] HL7 Deutschland e.V. and Qualitaetsring Medizinische Software (QMS). Standardisa-

tion of communication between information systems in physician’s offices and hospitals

using xml (sciphox). Standardisation Effort, July 2005. http://www.sciphox.de/.

[81] KDE Project (e.V.). K desktop environment (kde). Open Source Project, August

2004. http://www.kde.org.

[82] LinuxTag e.V. Linux tag linux expo and conference, June 2005.

http://www.linuxtag.org/.

[83] Martin Fache. Recherche und evaluierung eines konzeptes fr graphische benutzer-

oberflaechen in cybol. Seminar work (hauptseminararbeit), Technical University of

Ilmenau, Ilmenau, January 2004. http://www.cybop.net.

[84] X. Fere and S. Vegas. An evaluation of domain analysis methods. In 4th

CAiSE/IFIP8.1 International Workshop in Evaluation of Modeling Methods in Sys-

tems Analysis and Design (EMMSAD99), Heidelberg, Germany, 1999.

[85] David Gomez Fernandez. The small astronomer’s corner, February 2002.

http://usuarios.lycos.es/davidgomezfernandez/Ingles/principalpage.html.

[86] Guillen Fernandez and Bernd Weber. Hirnforschung: Gedaechtnis – fische fangen

im erinnerungsnetz. In Gehirn & Geist, volume 2, pages 68–73. Spektrum der Wis-

senschaft, http://www.spektrum.de, 2003. http://www.gehirn-und-geist.de.

[87] Tim Finin and et al. Knowledge query and manipulation language (kqml), November

2004. http://www.cs.umbc.edu/kqml/.

[88] Tim Finin, Yannis Labrou, and James Mayfield. Kqml as an agent communication

language. In Jeff Bradshaw, editor, Software Agents. MIT Press, Cambridge, 1997.

http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf.

[89] Peter Flass. The pl/i language, 2002. http://home.nycap.rr.com/pflass/pli.htm.

[90] Fraunhofer FOKUS. Berlios developer. Free and Open Source Software Development

Portal, 2002. http://developer.berlios.de/.

[91] Foundation for a Free Information Infrastructure. Call for action ii. Internet Page,

May 2004. http://swpat.ffii.org/.

416 14 Appendices

[92] National Council for Prescription Drug Programs (NCPDP). Various electronic stan-

dards for the transmission of pharmacy data. Standardisation Effort, July 2005.

http://www.ncpdp.org/.

[93] American Society for Testing and Materials (ASTM) International Subcommit-

tee E31.28. WK4363 Standard Specification for the Continuity of Care Record

(CCR). ASTM International, Massachusetts Medical Society (MMS), Health

Information Management and Systems Society (HIMSS), American Academy of

Family Physicians (AAFP), American Academy of Pediatrics (AAP), American

Medical Association (AMA), draft edition, March 2004. http://www.astm.org/cgi-

bin/SoftCart.exe/DATABASE.CART/WORKITEMS/WK4363.htm?L+mystore

+lttx3162.

[94] David Forslund and et al. Openemed project, 2005. http://www.openemed.org.

[95] Free Software Foundation. Savannah. Free and Open Source Software Development

Portal, 2000-2003. http://savannah.gnu.org/.

[96] The GNOME Foundation. Gnu network object model environment (gnome). Open

Source Project, 2004. http://www.gnome.org/.

[97] Martin Fowler. Analysis Patterns – Reusable Object Models. Addison-Wesley, Boston,

Muenchen, 1997. http://www.aw.com.

[98] Martin Fowler. The new methodology. Web Article, April 2003.

http://martinfowler.com/articles/newMethodology.html.

[99] Martin Fowler. Domain specific language (dsl). Web Article, February 2004.

http://martinfowler.com/bliki/DomainSpecificLanguage.html.

[100] Martin Fowler. Inversion of control containers and the dependency injection pattern.

Web Article, January 2004. http://www.martinfowler.com/articles/injection.html.

[101] Martin Fowler and et al. Patterns of Enterprise Application Architecture (In-

formation Systems Architecture). Addison-Wesley, Boston, Muenchen, 2001-2002.

http://www.aw.com.

[102] David S. Frankel. Model driven architecture (mda) – reality and implementation.

Online Presentation, 2001. http://www.omg.org/mda/mda files/DFrankel MDA v01-

00 PDF.pdf.

[103] Artists from around the world. Open clip art library. Archive of user contributed clip

art that can be freely used, 2005. http://www.openclipart.org/.

14.2 References 417

[104] Free Software Foundation (FSF). Gnu- and other licenses. Website, April 2005.

http://www.gnu.org/licenses/licenses.html.

[105] Deutsches Institut fuer Medizinische Dokumentation und Information (DIMDI). Var-

ious medical specification documents. Website, July 2005. http://www.dimdi.de/.

[106] Regionales Rechenzentrum fuer Niedersachsen/ Universitaet Hannover, Zentralinstitut

fuer Angewandte Mathematik, and Forschungszentrum Juelich GmbH. Die program-

miersprache c, March 1991.

[107] Anne-Kathrin Funkat and Gert Funkat. Prozessbasiertes Knowledge

Engineering in medizinischen Problemdomaenen. PhD thesis, Techni-

cal University of Ilmenau, Ilmenau, 2003. http://www.bibliothek.tu-

ilmenau.de/elektr medien/dissertationen/2003/Funkat Anne Kathrin Gert/index.html.

[108] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Gang Of Four). De-

sign Patterns. Elements of reusable object oriented Software. Addison-Wesley, Bonn,

Boston, Muenchen, 1st edition, 1995. http://www.aw.com.

[109] D. Garlan. Software architecture: A roadmap. In The Future of Software Engineering,

pages 91–101. ACM Press, 2000.

[110] Robert A. Gehring and Bernd Lutterbeck, editors. Open Source Jahrbuch 2004 –

Zwischen Softwareentwicklung und Gesellschaftsmodell. Lehmanns Media – LOB.de,

Berlin, 2004. http://www.think-ahead.org.

[111] Michael R. Genesereth. Knowledge interchange format (kif). draft

proposed American National Standard (dpANS); NCITS.T2/98-004.

http://logic.stanford.edu/kif/dpans.html.

[112] James Gosling, Bill Joy, Guy Steele, and et al. The Java Programming Language

Specification; The Java Development Kit (JDK). Sun Microsystems, Inc., Santa Clara,

2nd edition, 1996-2000. http://java.sun.com.

[113] Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated

with UML, volume 1. Wiley Publishing, Hoboken, Indianapolis, Weinheim, 2nd

edition, October 2002. http://www.wiley.com/WileyCDA/WileyTitle/productCd-

0471227293.html.

[114] Mark Greaves and et al. Darpa agent markup language (daml) and ontology infer-

ence layer (oil). Lecture Notes, 2004. http://www.w3.org/TR/2001/NOTE-daml+oil-

reference-20011218.

418 14 Appendices

[115] M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the rseb.

Proceedings of the Fifth International Conference on Software Reuse, pages 76–85,

June 1998. http://www.intecs.it.

[116] Ontology.org Group. Ontology.org independent industry and research forum. Internet

Web Site, 2000. http://www.ontology.org/.

[117] World Wide Web Consortium (W3C) Math Working Group. Mathematical markup

language (mathml) 2.0 recommendation. Online Specification, October 2003.

http://www.w3.org/TR/2003/REC-MathML2-20031021/.

[118] T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Academic

Press, June 1993. http://www-ksl.stanford.edu/kst/what-is-an-ontology.html.

[119] Volker Gruhn and Andreas Thiel. Komponentenmodelle. DCOM, JavaBeans,

Enterprise JavaBeans, CORBA. Addison-Wesley, Boston, Muenchen, 2000.

http://www.aw.com.

[120] Markus Gumbel, Marcus Vetter, and Carlos Cardenas. Java Standard Libraries: Java

2 Collections Framework und Generic Collection Library for Java. Professionelle

Programmierung. Addison-Wesley, Muenchen, Boston, San Francisco, an imprint of

pearson education edition, 2000.

[121] Graham Hamilton, Rick Cattell, and Maydene Fisher. JDBC Database Access with

Java. Addison-Wesley, Reading/ Mass., Bonn, Boston, Muenchen, 1997.

[122] Jens Hartwig. PostgreSQL, Professionell und praxisnah. Addison-Wesley, Muenchen,

2001.

[123] Geoff Haselhurst. On truth and reality. Philosophical Website, March 2004.

http://www.spaceandmotion.com/.

[124] Christian Heller. Schluszbericht / ergebnisbericht. Vorhabensbezeichnung: Nutzung

von Domaenen-Engineering-Techniken zur Entwicklung objektorientierter Systeme

mit Anbindung an hostbasierte Legacy-Systeme im Versicherungswesen, September

2003.

[125] Christian Heller. Cybernetics oriented language (cybol). IIIS Proceedings: 8th World

Multiconference on Systemics, Cybernetics and Informatics (SCI 2004), V:178–185,

July 2004. http://www.iiisci.org/sci2004 or http://www.cybop.net.

[126] Christian Heller, Jens Bohl, Torsten Kunze, and Ilka Philippow. A flexible soft-

ware architecture for presentation layers demonstrated on medical documentation with

14.2 References 419

episodes and inclusion of topological report. Journal of Free and Open Source Medical

Computing (JOSMC), 1(26.06.2003):Article 1, June 2003. http://www.josmc.net.

[127] Christian Heller, Torsten Kunze, Jens Bohl, and Ilka Philippow. A new concept

for system communication. Ontology Workshop at OOPSLA Conference, October

2003. http://swt-www.informatik.uni-hamburg.de/conferences/oopsla2003-workshop-

position-papers.html.

[128] Christian Heller, Periklis Sochos, and Ilka Philippow. Reflexions on knowledge mod-

elling. Paper on CYBOP Website, March 2006. http://www.cybop.net.

[129] Christian Heller, Detlef Streitferdt, and Ilka Philippow. A new pattern systematics.

Paper on CYBOP Website, March 2005. http://www.cybop.net.

[130] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative

Approach. Morgan Kaufmann Publishers, Elsevier Science, Amsterdam, Boston, 3rd

edition, 2003. http://www.mkp.com.

[131] Horst Herb, Karsten Hilbert, and et al. Gnumed project, April 2005.

http://www.gnumed.org/.

[132] Gilbert Carl Herschberger II, Jonathon Tidswell, Stephen Crawley, and et al. The

jos-general mailing list. jos-general@lists.sourceforge.net.

[133] Hewett, Baecker, Card, and et al. Curricula for human-computer interaction (hci).

Technical report, ACM SIGCHI, June 2004. http://sigchi.org/cdg/index.html.

[134] Francis Heylighen. Web Dictionary of Cybernetics and Systems. Principia Cybernetica

Web. Internet, 2002. http://pespmc1.vub.ac.be/ASC/.

[135] Karsten Hilbert, Christian Heller, Roland Colberg, and et al. Anal-

ysedokument zur Erstellung eines Informationssystems fuer den Ein-

satz in der Medizin. Res Medicinae Free Software Project, 2001-2004.

http://resmedicinae.sourceforge.net/analysis/index.html.

[136] Andrew P. Ho and et al. Open infrastructure for outcomes (oio) project and reading

material library, 2002. http://www.txoutcome.org.

[137] Bob Hoffman and et al. Encyclopedia of educational technology (eet). Web Encyclo-

pedia, January 2004. http://coe.sdsu.edu/eet/.

[138] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture.

Addison-Wesley, December 1999.

[139] Herwart (Wau) Holland-Moritz. Der datengarten. Internet Website, 2003.

http://www.wauland.de/datagarden.html.

420 14 Appendices

[140] Rolf Holzmueller. Erstellung intuitiver web frontends zur terminplanung und verwal-

tung administrativer daten, basierend auf einem webserver mit jsp technologie, sowie

anbindung an ein medizinisches informationssystem. Student project (studienarbeit),

Technical University of Ilmenau, Ilmenau, April 2003. http://www.cybop.net.

[141] Rolf Holzmueller. Untersuchung der realisierungsmoeglichkeiten von cybol-

webfrontends, unter verwendung von konzepten des cybernetics oriented programming

(cybop). Master’s thesis (diplomarbeit), Technical University of Ilmenau, Ilmenau,

June 2005. http://www.cybop.net.

[142] Cover Pages hosted by OASIS. Sgml and xml as (meta-) markup languages. Internet

Article, July 2002. http://xml.coverpages.org/sgml.html.

[143] Denis Howe. Free on-line dictionary of computing (foldoc). Internet Database, Septem-

ber 2003. http://wombat.doc.ic.ac.uk/foldoc/Dictionary.gz, http://www.foldoc.org/.

[144] Peter Hrastnik. Comparison of distributed system technologies for e-business.

2nd International Interdisciplinary Conference on Electronic Commerce (ECOM-

02), Electronic Commerce: Theory and Applications:49–56, November 2002.

http://parlevink.cs.utwente.nl/ecom/02/proceedings/ecom02 07.pdf.

[145] Stephan Huttenhuis and Nick Tinnemeier. The join point model (jpm) in aspect ori-

ented programming (aop). http://wwwhome.cs.utwente.nl/ tinnemeiernam/JPM.pdf,

March 2004.

[146] Graham Hutton. Frequently asked questions for comp.lang.functional. University of

Nottingham, November 2002. http://www.cs.nott.ac.uk/ gmh//faq.html#functional-

languages.

[147] Industrieanlagen-Betriebsgesellschaft (IABG). Das v-modell: Entwicklungsstandard

fr it-systeme des bundes. Website, 2004. http://www.v-modell.iabg.de/.

[148] Cunningham & Cunningham Inc. Portland pattern repository, 2004.

http://c2.com/cgi/wiki?PortlandPatternRepository.

[149] Free Software Foundation Inc. Gnu operating system, 2004. http://www.gnu.org.

[150] Health Level Seven Inc. Reference information model (rim), clinical document archi-

tecture (cda) and more, 2004. http://www.hl7.org/.

[151] International Business Machines Inc. http://www.ibm.com.

[152] OTW Software Inc. and formerly Objektorientierte und Wissensbasierte Sys-

teme (OWiS). Object technology workbench (otw). UML Tool, June 2000.

http://www.otwsoftware.com/.

14.2 References 421

[153] Silicon Graphics Inc. Standard template library (stl), 2004.

http://www.sgi.com/tech/stl.

[154] Sun Microsystems Inc. Javadoc source code documentation tool, February 2004.

http://java.sun.com/j2se/javadoc/.

[155] Wolfram Research Inc. Mathematica – computer algebra system, November 2004.

http://www.wolfram.com/products/mathematica/index.html.

[156] American National Standards Institute. Ansi c standard. http://www.ansi.org/.

[157] Regenstrief Institute. Logical observation identifiers, names and codes (loinc). Stan-

dardisation Effort, June 2005. http://www.regenstrief.org/loinc/.

[158] SNOMED International and College of American Pathologists (CAP). System-

atized nomenclature of medicine (snomed). Standardisation Effort, July 2005.

http://www.snomed.org/.

[159] International Business Machines (IBM). iSeries Information Center –

POSIX Thread Application Programming Interfaces (API), November 2005.

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/apis/rzah4mst.htm.

[160] International Organization for Standardization (ISO). ISO 8879:1986

– Standard Generalized Markup Language (SGML), 1st edition, 1986.

http://www.iso.ch/cate/d16387.html.

[161] Intershop Communications AG, Jena. Enfinity 2 Pipeline Logic: Using the VPM,

2003. http://www.intershop.de/pdf/services/education/courses/EN2-220-EN.pdf.

[162] ISO/TC 215 Working Group 3 Health Informatics – Health

Concept Representation. Comments on Meta Terminology.

http://www.tc215wg3.nhs.uk/pages/docs/cometate.rtf.

[163] International Telecommunication Union (ITU). Specification and description language

(sdl) forum society, August 2004. http://www.sdl-forum.org/SDL/index.htm.

[164] Ivar Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process and

Organization for Business Success. Addison-Wesley-Longman, Boston, Muenchen,

May 1997. http://www.aw.com.

[165] Ludwig Jaeger. Linguistik: Ohne sprache undenkbar. In Gehirn & Geist, vol-

ume 2, pages 36–42. Spektrum der Wissenschaft, http://www.spektrum.de, 2003.

http://www.gehirn-und-geist.de.

[166] Gangolf Jobb. We need more freedom in science, more independence, more democracy.

TreeFinder Website, 1997-2006. http://www.treefinder.de/politics.html.

422 14 Appendices

[167] Michael K. Johnson and Erik W. Troan. Anwendungen entwickeln unter Linux.

Linux Specials. Addison-Wesley Longman, Bonn, Reading/ Mass., 1 edition, 1998.

http://www.aw.com.

[168] Bhaskar (formerly: Minoru Development) K. S. Open health mailing list, 1999-2005.

openhealth@yahoogroups.com (formerly: openhealth-list@minoru-development.com).

[169] Dipak Kalra. The use of international health it standards: Cen ehr

communications task force – are we getting closer to an operational

international ehr standard? Presentation, 2002. http://www.epj-

observatoriet.dk/konference2002/konferenceslides/DipakKalraB2.pdf.

[170] Dipak Kalra and et al. Headings for communicating information for the personal

health record – headings within electronic healthcare records. Evaluation Report 1,

Centre for Health Informatics and Multiprofessional Education (CHIME), London,

May 1998. http://www.nhsia.nhs.uk/headings/pdf/chime1.pdf.

[171] Kumanan Kanagasabapathi. Erstellung und anbindung intuitiver frontends an eine

anwendung zur verwaltung administrativer personendaten unter beachtung von aspek-

ten der internationalisierung. Student project (studienarbeit), Technical University of

Ilmenau, Ilmenau, June 2003. http://www.cybop.net.

[172] Kassenaerztliche Bundesvereinigung (KBV). x daten traeger (xdt), 2004.

http://www.kbv-it.de/it/xdtinfo.htm.

[173] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley,

Boston, Muenchen, 1999.

[174] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language (ANSI-

C). Prentice-Hall, Englewood Cliffs, 2nd edition, March 1988.

[175] Marcel Kiesling. Das socketkommunikationsmodell. Seminar work (hauptseminarar-

beit), Technical University of Ilmenau, Ilmenau, July 2004. http://www.cybop.net.

[176] Bill Kinnersley. The language list. Website, September 2004.

http://people.ku.edu/ nkinners/LangList/Extras/langlist.htm.

[177] Jens Kleinschmidt. Ein beitrag zur evaluierung von komponententechnologien im um-

feld von software zur medizinischen bildbearbeitung. Master’s thesis (diplomarbeit),

Technical University of Ilmenau, Ilmenau, July 2003. http://www.cybop.net.

[178] Rainer Klute. JDBC in der Praxis. Addison-Wesley Longman, Bonn, Boston,

Muenchen, 1998. http://www.aw.com.

14.2 References 423

[179] Donald Ervin Knuth. Tex, 1978-2004. http://www.tug.org/.

[180] Oswald Kowalski. Fachsprachen der prozessdatenverarbeitung. Script and Personal

Discussions, 2004.

[181] Philippe Kruchten, Ivar Jacobson, and et al. Rational unified process (rup). Website,

2004. http://www-136.ibm.com/developerworks/rational/products/rup.

[182] Philippe B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–

50, November 1995. http://www.cs.ubc.ca/ gregor/teaching/papers/4+1view-

architecture.pdf.

[183] Ralf Kuehnel. Agentenbasierte Softwareentwicklung: Methode und Anwendungen.

Agenten Technologie. Addison-Wesley, Muenchen, 2001.

[184] Markus Guenther Kuhn. A summary of the iso ebnf notation. Web Document, Septem-

ber 1998. http://www.cl.cam.ac.uk/ mgk25/iso-ebnf.html.

[185] Torsten Kunze. Untersuchung zur realisierbarkeit einer technologieneutralen mapping-

schicht fuer den datenaustausch am beispiel einer anwendung zum medizinischen for-

mulardruck als integrativer bestandteil eines electronic health record (ehr). Mas-

ter’s thesis (diplomarbeit), Technical University of Ilmenau, Ilmenau, January 2003.

http://www.cybop.net.

[186] AT&T Research Labs. Graphviz – graph visualization software and dot language,

November 2004. http://www.graphviz.org/.

[187] Gerald Lai, Scott Nisbitt, Ed Fong, and Phat Ha. Neural pathways

to long term memory (ltm). Kin 356 Web Encyclopedia, January 2005.

http://ahsmail.uwaterloo.ca/kin356/ltm/ltm.htm.

[188] Leslie Lamport. Latex, 1984-2004. http://www.latex-project.org/.

[189] Harold D. Lasswell. Describing the contents of communication. In Casey Ders., Smith,

editor, Propaganda, Communication and Public Opinion. Princeton University Press,

Princeton, 1946. http://www.kfh-mainz.de/downloads/sasp/buesch/.

[190] Elpidio Latorilla and et al. Care2x, October 2004. http://care2x.org/.

[191] Andrew Layman and Edward Jung. XML-Data. World Wide Web Consortium (W3C),

note edition, January 1998. http://www.w3.org/TR/1998/NOTE-XML-data-0105/.

[192] Gottfried Wilhelm Leibnitz. La Monadologie. E-Text.org, 2004. http://www.e-

text.org/text/Leibnitzogie.txt.

424 14 Appendices

[193] Eric Levenez. Computer languages history – timeline. Website, September 2004.

http://www.levenez.com/lang/.

[194] Richard Levins and Richard Lewontin. The Dialectical Biologist. Har-

vard University Press, Harvard, reprint edition edition, March 1987.

http://en.wikipedia.org/wiki/Dialectics.

[195] C++ standard library (libstdc++), 2004. http://gcc.gnu.org/libstdc++/.

[196] Clark S. Lindsey, Johnny S. Tolliver, and Thomas Lindblad. Java

chips. Web Course, December 2004. http://www.particle.kth.se/ lind-

sey/JavaCourse/Book/Part3/Chapter24/chips.html.

[197] The linux documentation project. HOWTOs,Guides,FAQs,man pages,Linux

Gazette,LinuxFocus, 2004. http://www.tldp.org/.

[198] Barbara Liskov and et al. The clu programming language, 2004.

http://www.pmg.lcs.mit.edu/CLU.html.

[199] Eric Little. Initial taxonomical structure for upper-level military ontology cat-

egories of level 2 and 3 information fusion constructs. Presentation, 2003.

http://www.acsu.buffalo.edu/ eglittle/current research/MILO (PWRPNT).ppt.

[200] Recordare LLC. Musicxml definition 1.0. Online Specification, March 2005.

http://www.musicxml.org.

[201] Andrea Lombardoni. Vrml interface for internet oms. Master’s thesis, Institut fr

Informationssysteme, Eidgenoessische Technische Hochschule Zuerich (ETH), October

1999. http://www2.inf.ethz.ch/personal/lombardo/archives/da/node5.html.

[202] Peter William Lount. Smalltalk.org, 2004. http://www.smalltalk.org.

[203] RHA (Minisystems) Ltd. Dynamic data exchange (dde) and

netdde faq. Frequently Asked Questions (FAQ), August 2005.

http://www.angelfire.com/biz/rhaminisys/ddeinfo.html.

[204] M. Lutz. Programming Python. O’Reilly and Associates, 1996.

[205] Niels Malotaux. Evolutionary project management methods: How to deliver quality on

time in software development and systems engineering projects. Booklet on Internet,

February 2004. http://www.malotaux.nl/nrm/pdf/MxEvo.pdf.

[206] Maintenance Agency Policy Group (MAPG). Global medical device nomenclature

(gmdn). Standardisation Effort, July 2005. http://www.gmdn.org/.

14.2 References 425

[207] Charlene Marietti. Will the real cpr / emr / ehr please stand up.

Healthcare Informatics Online, May 1998. http://www.healthcare-

informatics.com/issues/1998/05 98/cover.htm.

[208] Tom Marley. Reusable information components in healthcare – a comparison of current

methods and outputs. Discussion Paper 0.1, University of Salford, Shire, United

Kingdom, December 2003. http://www.centc251.org/TCMeet/doclist/TCdoc04/N04-

001ReusableComponentDiscussion.pdf.

[209] David Megginson and et al. Simple api for xml (sax). Public Domain Software Project,

1997-2004. http://www.saxproject.org/.

[210] Wolfgang Meier and et al. exist – open source native xml database, 2004.

http://exist.sourceforge.net/.

[211] Tim Menzies. Domain specific languages (dsl), 2004.

http://www.cs.pdx.edu/ timm/dm/dsl.html.

[212] NJ MICRA, Inc. of Plainfield, editor. Webster’s Revised Unabridged Dictio-

nary. C. & G. Merriam Co., Springfield, Mass., february 1998 edition, 1913.

ftp://ftp.uga.edu/pub/misc/webster/.

[213] Leonid Mikhajlov and Emil Sekerinski. The fragile base class problem and its solu-

tion. Technical Report 117, Turku Centre for Computer Science (TUCS), May 1997.

http://www.tucs.abo.fi/publications/techreports/TR117.php.

[214] MySQL. Mysql database server, May 2005. http://dev.mysql.com/.

[215] Logiciel Nautilus and Philippe Ameline. Odyssee project, 2003. http://www.nautilus-

info.com/.

[216] Open Source Development Network. Freshmeat. Free and Open Source Software

Development Portal, 2004. http://freshmeat.net/.

[217] Open Source Development Network. Sourceforge.net. Free and Open Source Software

Development Portal, 2004. http://sourceforge.net/.

[218] European network of excellence for End-User Development (EUD-net). Eud-

net@umist. Website, April 2003. http://www.co.umist.ac.uk/EUD-net/.

[219] National Health Service Information Authority (NHSIA). Office of population cen-

suses and surveys classification of surgical operations and procedures. Standardisation

Effort, April 2005. http://www.connectingforhealth.nhs.uk/.

426 14 Appendices

[220] United Kingdom (UK) National Health Service Information Authority

(NHSIA). Read codes (read). Standardisation Effort, January 2002.

http://www.connectingforhealth.nhs.uk/.

[221] I. Nonaka. A dynamic theory of organizational knowledge creation. Organization

Science, 5(1):14–35, February 1994.

[222] Peter Norvig. The java iaq: Infrequently answered questions.

http://www.norvig.com/java-iaq.html.

[223] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in

Common Lisp. Morgan Kaufmann, 1992.

[224] John J O’Connor and Edmund F Robertson. The mactutor history of mathematics

archive – indexes of biographies. Website of the School of Mathematics and Statis-

tics, University of St Andrews, Scotland, January 2003. http://www-history.mcs.st-

andrews.ac.uk/history/index.html.

[225] Mick O’Donnell. What is systemic-functional linguistics? Internet Website, February

2004. http://www.wagsoft.com/Systemics/Definition/definition.html.

[226] Journal of Free and Open Source Medical Computing (JOSMC). Free journal pub-

lishing web portal, September 2005. http://www.josmc.org/.

[227] Association of Lisp Users. Object oriented and procedural lisp.

http://www.lisp.org/table/objects.htm.

[228] United States National Library of Medicine (NLM) and National Institutes of Health.

Unified medical language system (umls). Standardisation Effort, June 2005.

http://www.nlm.nih.gov/research/umls/umlsdoc.html.

[229] International Council of Nurses (ICN). International classification for nursing practice

(icnp). Standardisation Effort, June 2005. http://www.icn.ch/icnp.htm.

[230] American College of Radiology (ACR) and National Electrical Manufacturers Associ-

ation (NEMA). Digital imaging and communications in medicine (dicom). Standard-

isation Effort, April 2005. http://medical.nema.org/.

[231] National Institute of Standards and Technology (NIST). Dictionary of algorithms and

data structures. Online Dictionary, July 2004. http://www.nist.gov/dads/.

[232] R. O’Hara and D. Gomberg. Modern Programming Using REXX. Prentice Hall, 1988.

[233] Mike Olson and Uche Ogbuji. The python web services developer: Messaging tech-

nologies compared. IBM Developer Works Online Paper, July 2002. http://www-

106.ibm.com/developerworks/webservices/library/ws-pyth9/.

14.2 References 427

[234] Object Management Group (OMG). The common object request broker: Architecture

and specification, 1992. http://www.omg.org.

[235] Object Management Group (OMG). Unified modeling language (uml) specification,

2001. http://www.uml.org.

[236] Object Management Group (OMG). Model driven architecture (mda), March 2002.

http://www.omg.org/mda/.

[237] Object Management Group (OMG). Healthcare domain task force (hdtf), formerly

corbamed. Documents and Specifications, 2003. http://healthcare.omg.org/.

[238] Standards Committee on Dental Informatics (SCDI) belonging to the American Dental

Association (ADA). Standards and guidelines for dental practice. Standardisation

Effort, July 2005. http://www.ada.org/.

[239] OpenOffice.org Organization. Openoffice.org, 2004. http://www.openoffice.org/.

[240] Charles E. Osgood, George E. Suici, and Percy H. Tannenbaum. The Measure-

ment of Meaning. University of Illinois Press, Urbana, 1957. http://www.kfh-

mainz.de/downloads/sasp/buesch/.

[241] Open Source Health Care Alliance (OSHCA). Oshca homepage, 2000-2004.

http://www.oshca.net.

[242] Open Source Initiative (OSI). Open source definition, certification mark and program,

approved licenses. Internet Site, 2004. http://www.opensource.org/.

[243] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[244] John K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE

Computer magazine, March 1998.

[245] David Parks. Agent oriented programming: A practical evaluation. Web Article, May

1997. http://www.cs.berkeley.edu/ davidp/cs263/.

[246] Ilian Pashov. Feature-Based Methodology for Supporting Architecture Refac-

toring and Maintenance of Long-Life Software Systems. PhD thesis, Tech-

nical University of Ilmenau, Ilmenau, 2004. http://www.bibliothek.tu-

ilmenau.de/elektr medien/dissertationen/2004/Pashov Ilian/index.html.

[247] Mark C. Paulk. Extreme programming from a cmm perspec-

tive. IEEE Software, 18(6):19–26, November/ December 2001.

http://www.sei.cmu.edu/publications/articles/paulk/xp-cmm.html.

428 14 Appendices

[248] Mark C. Paulk, Charles V. Weber, and et al., editors. The Capability Maturity Model:

Guidelines for Improving the Software Process. Addison-Wesley, Carnegie Mellon

University, Software Engineering Institute, 1995. ISBN 0-201-54664-7.

[249] Margarete Payer and Alois Payer. Computervermittelte kommunikation / com-

puter mediated communication (cmc). Lecture Notes on Website, November 2002.

http://www.payer.de/cmclink.htm.

[250] Ilka Philippow. Grundlagen der informatik. http://www.theoinf.tu-

ilmenau.de/proinf/english/teaching/Lectures.html, April 2003.

[251] Joseph P. Pickett and et al., editors. American Heritage Dictionary of the

English Language. Houghton Mifflin Company, Boston, 4th edition, 2000.

http://www.bartleby.com/61/.

[252] Wolfgang Pree. Meta patterns – a means for capturing the essentials of reusable

object-oriented design. In Proceedings of ECOOP ’94, pages 150–162, 1994.

[253] Apache Project. Apache jakarta open source solutions on the java platform, 1999-2004.

http://jakarta.apache.org/.

[254] AspectJ Project. Aspectj: Aspect-oriented java extension, 2002. http://aspectj.org.

[255] AspectWerkz Project. Aspectwerkz: Simple, dynamic, lightweight and powerful aop

for java, 2002. http://aspectwerkz.codehaus.org/.

[256] CYBOP Project. Cybernetics oriented programming (cybop), 2002-2004.

http://www.cybop.net.

[257] CYGWIN Project. Cygwin linux-like environment for windows. Internet Portal, 2006.

http://www.cygwin.com/.

[258] Debian Project. Debian gnu/linux, 1997-2004. http://www.debian.org.

[259] Debian-Med Project. Debian-med, 2002-2004. http://www.debian.org/devel/debian-

med/.

[260] JDistro Project. Jdistro java distribution, 2002-2004. http://www.jdistro.com/.

[261] JOS Project. Java operating system, 2000-2004. http://cjos.sourceforge.net/.

[262] Mozilla Project. Xml user interface language (xul). Specification, 2004.

http://www.mozilla.org/projects/xul/.

[263] OSCAR/ McMaster Project. Open source clinical application and resource from mc-

master university (oscar), 2002-2004. http://www.oscarmcmaster.org/.

14.2 References 429

[264] PostgreSQL Project. Postgresql, 2000-2004. http://www.postgresql.org.

[265] PostgreSQL Project. Postgresql – multiversion concurrency control, 2002.

http://www.postgresql.org/idocs/index.php?mvcc.html.

[266] Res Medicinae Project. Res medicinae – medical information system, 1999-2004.

http://www.resmedicinae.org.

[267] Scope Project. Scope hmvc java framework, 2001-2004. http://scope.sourceforge.net/.

[268] The Apache XML Project. Xerces java parser, 2003. http://xml.apache.org/xerces2-

j/index.html.

[269] The HXP Project. Healthcare xchange protocol (hxp), 2004.

http://hxp.sourceforge.net/.

[270] Willibald Pschyrembel and Woerterbuch-Redaktion des Verlages. Pschyrem-

bel – Klinisches Woerterbuch. Walter de Gruyter, Berlin, 260 edition, 2004.

http://www.pschyrembel.de/.

[271] Eric Steven Raymond. The Cathedral and the Bazar. Internet Publication, 1.57 edi-

tion, 2000. http://www.catb.org/ esr/writings/cathedral-bazaar/cathedral-bazaar/.

[272] Refsnes Data. W3Schools - Full Web Building Tutorials - All Free, 1999-2004.

http://www.w3schools.com/.

[273] Fiach Reid. Xaml.net – a guide to xaml. Web Article, October 2004.

http://www.xaml.net/.

[274] Peter Ripota. Das universum hat ein bewusstsein! In P.M. Magazin, pages 21–25.

Hans-Hermann Sprado, September 2003. http://www.pm-magazin.de.

[275] Jeremy Rogers. Health Informatics – Vocabulary for Terminological Systems, May

2002. http://www.tc215wg3.nhs.uk/pages/.

[276] Jeremy Rogers and University of Manchester Medical Informatics Group. Med-

ical informatics standards / medical terminology. Website, January 2004.

http://www.cs.man.ac.uk/mig/links/RCSEd/standards.htm — terminology.htm.

[277] Kelley L. Ross, editor. The Proceedings of the Friesian School, Fourth Series, De-

partment of Philosophy, Los Angeles Valley College, Van Nuys, 2004. Ross, Kelley L.

http://www.friesian.com/.

[278] Rusty Russell, Daniel Quinlan, and Christopher Yeoh. Filesystem Hierarchy Stan-

dard (FHS). Filesystem Hierarchy Standard Group, 2.3 edition, January 2004.

http://www.pathname.com/fhs/.

430 14 Appendices

[279] Don Sannella. Extended meta language (extended ml), June 2004.

http://homepages.inf.ed.ac.uk/dts/eml/.

[280] R. Schiedermeier. Programmieren i. http://www.informatik.fh-

muenchen.de/ schieder/programmieren-1-ws96-97/struktpgm.html, 1996.

[281] Christoph Schoenhofer. Unternehmensberatung: Die neuro-manager. In Gehirn &

Geist, volume 2, pages 74–75. Spektrum der Wissenschaft, http://www.spektrum.de,

2003. http://www.gehirn-und-geist.de.

[282] W3 Schools. Structured query language (sql) tutorial, November 2004.

http://www.w3schools.com/sql/default.asp.

[283] Stephan H. Schug. Europaeische und internationale perspektiven von telematik

im gesundheitswesen. Studie (Expert’s Report) Fassung 1.0, Gesellschaft fuer Ver-

sicherungswissenschaft und -gestaltung (GVG) e.V., Ausschuss Telematik im Gesund-

heitswesen (ATG), Koeln, December 2000. http://www.iqmed.de.

[284] Viktor Schuppan and Winfried Ruszwurm. A cmm-based evaluation of the v-

model 97. In R. Conradi, editor, Proceedings of the 7th European Workshop

on Software Process Technology, pages 69–83, Kaprun, Austria, February 2000.

Springer. http://www2.inf.ethz.ch/personal/schuppan/VSchuppanWRusswurm-

EWSPT-2000.pdf.

[285] Peter v. Sengbusch. Kybernetik: Systeme, steuerung, regelung, information und re-

dundanz, 2002. http://www.biologie.uni-hamburg.de/b-online/d15/15.htm.

[286] Claude E. Shannon and Warren Weaver. Mathematical communication model.

http://www.kfh-mainz.de/downloads/sasp/buesch/.

[287] Yoav Shoham. Agent oriented programming. Artificial Intelligence, 60(1):51–92,

March 1993. http://portal.acm.org/citation.cfm?id=152188.

[288] Julian Smart, Anthemion Software Ltd., and et al. wxwidgets (formerly: wxwindows)

cross-platform native ui framework, April 2005. http://www.wxwidgets.org/.

[289] Barry Smith and Christopher Welty, editors. Formal Ontology and Information Sys-

tems. ACM Press, New York, 2001. http://www.geog.buffalo.edu/ncgia/ontology/.

[290] IEEE Computer Society. Standard Specifications. http://www.ieee.org.

[291] IEEE Computer Society. Recommended practice for architecture description of soft-

ware intensive systems. Standard Specification IEEE Std 1471-2000, 2000.

[292] The Internet Society. Electronic commerce modeling language (ecml). Field Specifi-

cations for E-Commerce, April 2001. http://www.faqs.org/rfcs/rfc3106.html.

14.2 References 431

[293] Poseidon Software and Invention. Base valued numbers. Internet Page, November

1998. http://www.psinvention.com/zoetic/basenumb.htm.

[294] John F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brooks/Cole, Thomson Learning, Pacific Grove, 2000.

[295] C. M. Sperberg-McQueen, Henry Thompson, and et al. XML Schema. World

Wide Web Consortium (W3C), recommendation part 0, 1, 2 edition, October 2004.

http://www.w3.org/XML/Schema.

[296] Sistema) Spirit Project Partners (minoru, ist. Eu spirit portal. Website, 2002.

http://www.euspirit.org/.

[297] Bernhard Steppan. Java-Programmierung mit Borland JBuilder 4. Addison-Wesley,

Muenchen, Boston, 2001. http://www.aw.com.

[298] P. Stoerig. Hirnforschung – visuelle wahrnehmung: Blindsehen. In Gehirn & Geist,

volume 2, pages 76–80. Spektrum der Wissenschaft, http://www.spektrum.de, 2003.

http://www.gehirn-und-geist.de.

[299] Detlef Streitferdt. A component model for applications based on feature models. In

Workshop on Software Variability Management, Groningen, December 2004. RUG.

[300] Detlef Streitferdt. Family-Oriented Requirements Engineering. PhD the-

sis, Technical University of Ilmenau, Ilmenau, 2004. http://www.bibliothek.tu-

ilmenau.de/elektr medien/dissertationen/2004/Streitferdt Detlef/index.html.

[301] Abteilung Allgemeinmedizin Studienzentrum Goettingen. Medizinische versorgung

in der praxis (medvip) projektantrag, teil e. http://medvip.uni-goettingen.de/, May

2005.

[302] Z Sweedyk. Software development life-cycle models. Online Lecture Notes, 2003.

http://www.cs.hmc.edu/courses/mostRecent/cs121/lectures/02.lifeCycles.pdf.

[303] Andrew Stuart Tanenbaum. Computernetzwerke. Pearson Studium, Muenchen, 3rd

edition, 2000. http://www.pearson-studium.com.

[304] Andrew Stuart Tanenbaum. Modern Operating Systems. Prentice-Hall, New Jersey,

London, Sydney, 2nd edition, 2001. http://www.prentice-hall.com.

[305] Andrew Stuart Tanenbaum and James R. Goodman. Structured Computer Orga-

nization / Computerarchitektur - Strukturen, Konzepte, Grundlagen. Prentice-Hall,

Muenchen, London, 4th edition, 1999. http://www.prentice-hall.com.

[306] Andrew Stuart Tanenbaum and Maarten van Steen. Distributed Systems - Principles

and Paradigms. Prentice-Hall, New Jersey, 2002. http://www.prentice-hall.com.

432 14 Appendices

[307] GTK Team. Gimp toolkit (gtk), April 2005. http://www.gtk.org/.

[308] SelfLinux Team. SelfLinux – Linux-Hypertext-Tutorial. PingoS e.V., Hamburg, 0.11.3

edition, June 2005. http://www.selflinux.org/.

[309] The GCC Team. The gnu compiler collection, May 2004. http://gcc.gnu.org/.

[310] TechTarget. Inter-process communication (ipc). Web Glossary, November 2004.

http://searchsmb.techtarget.com/sDefinition/0,,sid44 gci214032,00.html.

[311] Karsten Tellhelm. Xml parser. Code fragments, Technical University of Ilmenau,

Ilmenau, February 2004. http://www.cybop.net.

[312] Klasse Objecten Soest the Netherlands. Object constraint language (ocl) center. Web

Tutorial, October 2004. http://www.klasse.nl/ocl/index.html.

[313] Linus Torvalds, Alan Cox, and et al. The linux operating system kernel, 2004.

http://www.kernel.org/.

[314] Thomas Trepl. Edifactory. Website, 1999.

http://www.edifactory.de/edifact/edimain1.html.

[315] Trolltech. Cute toolkit (qt) c++ application development framework, April 2005.

http://www.trolltech.com/products/qt/index.html.

[316] Indian TeX Users Group (TUG). Online tutorials on latex, May 2003.

http://www.tug.org.in/tutorial/.

[317] Valentin Turchin. The cybernetic ontology of action. Kybernetes, 22(2):10–30,

1993. ftp://ftp.vub.ac.be/pub/projects/Principia Cybernetica/Papers Turchin/ Cy-

bernetic Ontology.tex.

[318] United Nations (UN). Electronic data interchange for administration, commerce and

transport (edifact), 2004. http://www.unece.org/trade/untdid/.

[319] Urban und Fischer Verlag Muenchen. Anatomical images from sobotta: Atlas der

anatomie. Internet; CDROM, 2002. http://www.urbanfischer.de.

[320] Princeton University. Wordnet 2.0 dictionary. Internet Web Database, September

2003. ftp://ftp.cogsci.princeton.edu/pub/wordnet/2.0/WordNet-2.0.tar.gz.

[321] Ignacio Valdes. Linux med news. News Website, April 2005.

http://www.linuxmednews.org/.

[322] J.H. van Bemmel and M.A. Musen, editors. Handbook of Medical Informatics. Erasmus

University, Stanford University, Rotterdam, Stanford, website 3.3 edition, March 1999.

http://www.mieur.nl/mihandbook/r 3 3/handbook/home.htm.

14.2 References 433

[323] Arie van Deursen, Paul Klint, and Joost Visser. Domain specific lan-

guages (dsl): An annotated bibliography. Online Paper, February 2000.

http://homepages.cwi.nl/ arie/papers/dslbib/.

[324] Dimitri van Heesch. Doxygen documentation system for c++, c, java, objective-c,

idl (corba and microsoft flavors) and to some extent php, c# and d, October 2004.

http://www.doxygen.org/.

[325] Vienna development method - specification language (vdm-sl), August 2004.

ftp://gateway.dec.com/pub/vdmsl standard.

[326] BioMed Central (BMC) | The Open Access Publisher. Journal publishing web portal,

September 2005. http://www.biomedcentral.com/.

[327] Steve Vinoski. New features for corba 3.0. Communications of the ACM, October

1998. http://www.iona.com/hyplan/vinoski/cacm.pdf.

[328] World VistA. Open veterans health information systems and technology architecture

(open vista), April 2005. http://www.worldvista.org/openvista/index.html.

[329] World Wide Web Consortium (W3C). Document object model (dom), 2002.

http://www.w3.org/DOM/.

[330] World Wide Web Consortium (W3C). World wide web consortium homepage, 2002-

2004. http://www.w3c.org/.

[331] World Wide Web Consortium (W3C). Simple object access protocol (soap). Recom-

mendation, 2004. http://www.w3.org/2000/xp/Group/.

[332] World Wide Web Consortium (W3C). World wide web consortium issues rdf and owl

recommendations: Semantic web emerges as commercial-grade infrastructure for shar-

ing data on the web. Press Release, February 2004. http://www.w3.org/2004/01/sws-

pressrelease.

[333] C. Peter Waegemann. Ehr vs. cpr vs. emr. Healthcare Informatics Online, May 2003.

http://www.healthcare-informatics.com/issues/2003/05 03/cover ehr.htm.

[334] L. Wall, T. Christiansen, and R. Schwartz. Programming Perl. O’Reilly and Asso-

ciates, 2 edition, 1996.

[335] Norman Walsh. A technical introduction to xml. Internet Tutorial, October 1998.

http://www.xml.com/pub/a/98/10/guide0.html.

[336] Norman Walsh and Leonard Muellner. DocBook: The Definitive Guide. O’REILLY,

http://www.oreilly.com/, v4.3cr3 edition, January 2004. http://docbook.org/.

434 14 Appendices

[337] Elmar Warken. Delphi 2 – Software-Entwicklung fuer 32-Bit-Windows. Addison-

Wesley, Bonn; Reading, Massachusetts, 1996. http://www.aw.com.

[338] S. Wartik and R. Prieto-Diaz. Criteria for comparing domain analysis approaches.

International Journal of Software Engineering and Knowledge Engineering, 2(3):403–

431, September 1992.

[339] Lawrence L. Weed. Medical Records, Medical Education, and Patient Care: The

Problem-Oriented Record as a Basic Tool. Year Book Medical Publishers, Inc,

Chicago, 1971.

[340] Don Wells. Extreme programming (xp). Website, January 2003.

http://www.extremeprogramming.org.

[341] Henk Westerhof and Dutch College of General Practitioners Utrecht. Episodes

of care in the new dutch gp systems. Primary Health Care Special-

ist Group Annual Conference Proceedings, Cambridge, September 1998.

http://www.phcsg.org.uk/conferences/cambridge1998/westerhof.htm.

[342] World Health Organization (WHO). International classification of diseases (icd). Stan-

dardisation Effort, June 2003. http://www.who.int/classifications/icd/en/.

[343] Ross N. Williams. Funnelweb tutorial manual, January 2000.

http://www.ross.net/funnelweb/tutorial/.

[344] Stephen Wolfram. A New Kind of Science. Wolfram Media, Inc., Champaign, 2002.

http://www.wolframscience.com/thebook.html.

[345] World Wide Web Consortium (W3C). Extensible Markup Language (XML), 1.0 edi-

tion, February 1998. http://www.w3.org/TR/1998/REC-xml-19980210.

[346] World Wide Web Consortium (W3C). OWL Web Ontology Language Guide, w3c

recommendation edition, February 2004. http://www.w3.org/TR/owl-guide/.

[347] World Wide Web Consortium (W3C). RDF Primer, http://www.w3.org/tr/2004/rec-

rdf-primer-20040210/ edition, February 2004. http://www.w3.org/TR/rdf-primer/.

[348] World Wide Web Consortium (W3C). Resource Description Framework (RDF), w3c

recommendations edition, October 2004. http://www.w3.org/RDF/.

[349] World Wide Web Consortium (W3C). Web Ontology Language (OWL), w3c recom-

mendation edition, February 2004. http://www.w3.org/TR/owl-ref/.

[350] Juergen Zimmermann and Gerd Beneken. Verteilte Komponenten und Datenbankan-

bindung. Mehrstufige Architekturen mit SQLJ und Enterprise JavaBeansTM 2.0.

Addison-Wesley, Boston, Muenchen, 2000. http://www.aw.com.

14.2 References 435

[351] Heinz Zuellighoven and et al. Tools & materials approach

to software-development. JWAM Open Source Project, 2004.

http://www.jwam.de/engl/produkt/e tmapproach.htm.

14.3 Figures 437

14.3 Figures

1.1 Scientific Inventions . 2

1.2 Constructive Development . 6

1.3 Merger of traditional and new Concepts . 7

1.4 Document Structure . 8

2.1 Waterfall Process with Back Flow . 14

2.2 V-Model . 15

2.3 Iterative Process . 16

2.4 Agile Manifesto . 17

2.5 Extreme Programming (strongly simplified) . 18

2.6 Abstraction Gaps . 21

2.7 Four Views Model [138] . 22

2.8 The 4+1 View Model of Architecture [182] . 23

3.1 Database Server (2 Tiers) . 28

3.2 Presentation Client (3 Tiers) . 30

3.3 Web Client and Server . 31

3.4 Local Process . 32

3.5 Human User . 34

3.6 Peer-to-Peer Node Communication . 35

3.7 Remote Server . 36

3.8 Legacy Host . 37

3.9 ISO OSI Reference Model . 38

3.10 Vertical and Horizontal Scaling . 39

3.11 Universal Communication between Humans and Computers 41

4.1 System with Logical Layers . 44

4.2 Programming Language History . 46

4.3 Programming Paradigm Systematics . 47

4.4 Computer Structure (adapted from [305]) . 49

4.5 Statement as Program Flow Chart and Structure Chart 53

4.6 Condition as Program Flow Chart and Structure Chart 54

4.7 Loop as Program Flow Chart and Structure Chart 55

4.8 Classification as UML Diagram . 69

438 14 Appendices

4.9 Encapsulation as UML Diagram . 71

4.10 Inheritance as UML Diagram . 72

4.11 Polymorphism as UML Diagram . 75

4.12 Java Container Framework Systematics . 76

4.13 Falsified Contents with Container Inheritance 78

4.14 Software Pattern Classification . 81

4.15 Layers Pattern . 82

4.16 Layer Supertype Pattern . 83

4.17 Domain Model Pattern . 84

4.18 Data Mapper Pattern . 85

4.19 Data Transfer Object Pattern . 86

4.20 Model View Controller Pattern . 88

4.21 Hierarchical Model View Controller Pattern . 89

4.22 Microkernel Pattern . 90

4.23 Broker Pattern . 90

4.24 Pipes and Filters Pattern . 91

4.25 Reflection Pattern . 92

4.26 Java Type System . 94

4.27 Command Pattern . 97

4.28 Wrapper Pattern . 98

4.29 Whole-Part Pattern . 99

4.30 Composite Pattern . 100

4.31 Chain of Responsibility Pattern . 101

4.32 Observer Pattern . 102

4.33 MVC- using Observer Pattern . 103

4.34 Template Method Pattern . 104

4.35 Counted Pointer Pattern . 105

4.36 Singleton Pattern . 106

4.37 Component Lifecycle Methods . 111

4.38 Class Inheriting Loggable Concern Interface . 114

4.39 Redundant Code through Usage of Concerns . 115

4.40 Overlapping Code through Usage of Concerns 116

4.41 Concerns Spread Functionality, an Ontology Bunches it 117

4.42 Six Pack Model of System Family Development [44, 79] 123

4.43 Classical Feature Model Diagram of a Car (based on [246]) 130

14.3 Figures 439

4.44 Model Driven Architecture [236] . 132

4.45 Model-Code Synchronisation [35, diagram by John Daniels] 134

4.46 Dual Model Approach [18] . 156

5.1 Mindmap of Sciences whose Principles influenced CYBOP 163

5.2 Separation of Mind/ Brain Leading to Knowledge/ System Control 166

5.3 Concepts of Human Thinking Leading to Hierarchical Knowledge 167

5.4 Translation of Data by Rules Leading to State-/ Logic Knowledge 168

5.5 Overall CYBOP Approach Based on Statics and Dynamics 169

6.1 Divisions of the Nervous System [52] . 176

6.2 Types of Memory [187, 137] . 179

6.3 Information Processing Model [137] . 180

6.4 Classification of Concerns . 186

6.5 Domain-Application- versus System-Knowledge Separation 188

6.6 Data Garden . 191

6.7 Knowledge – Hardware Connection . 193

6.8 System with Memory Structures, Processing Loops and Lifecycle 195

7.1 Wolfram’s Four Basic Kinds of Behaviour [344] 200

7.2 The Universe as to-be-abstracted Conglomerate (swirl from [258]) 202

7.3 Abstractions of Human Thinking . 203

7.4 Systematics of Nature . 204

7.5 Single Model Approach (adapted from [18]) . 218

7.6 Semi Structured Model Approach (adapted from [18]) 219

7.7 Hierarchical Model Approach (adapted from [18]) 220

7.8 Adapted (H)MVC Pattern with Hierarchical Elements 222

7.9 Association Elimination in an EHR . 223

7.10 Model Container and Ontological Levels . 224

7.11 Heal Illness as Hierarchical Algorithm, taken from Medicine 225

7.12 HL7 Reference Information Model Framework [150] 226

7.13 RIM Entities [150] . 226

7.14 Accessing a Person’s Attributes . 227

7.15 Access Method Elimination through Top-Level Container 228

7.16 Categorisation versus Composition of Parties [18, p. 12] 229

7.17 Knowledge Schema with Meta Information about Parts 234

440 14 Appendices

7.18 Double Hierarchy of Parts and Meta Information 236

7.19 Concept of a Horse with Structure, Meta Properties and Logic 237

7.20 Universal Memory Structure . 240

8.1 Closed Loop System with Feedback, modelled as Black Box 249

8.2 Logic translates between Input-, Domain- and Output States 250

8.3 Human Body with Sensoric and Motoric Organs 251

8.4 Computer Hardware with Input- and Output Devices 253

8.5 Ontology comparing Technical- and Biological Environment 253

8.6 Signal Processing as UML Sequence Diagram 254

8.7 Mathematical Communication Model by Shannon & Weaver [286] 256

8.8 Conversation Model by Osgood & Schramm [240] 257

8.9 Contents of Communication (Lasswell Formula) [189] 258

8.10 IT Environment with Server using Communication Patterns 259

8.11 Communication Patterns placed in Layered Architecture 262

8.12 Simplified Layered Architecture with State-/ Logic Knowledge 263

8.13 Different Kinds of Model Translators . 264

8.14 State Primitives sorted after their Granularity 267

8.15 Runtime Model Hierarchy with Logic manipulating States 268

9.1 Recommended CYBOL DTD . 277

9.2 Simplified CYBOL DTD . 277

9.3 Simplified CYBOL XSD . 278

9.4 Recommended CYBOL XSD . 279

9.5 CYBOL in EBNF . 280

9.6 Loop Control Structure and Elements in C and CYBOL 291

9.7 Condition Control Structure and Elements in C and CYBOL 292

9.8 Musical Score of Franz Schubert’s Ave Maria [200] 294

9.9 CYBOL Editor Supporting Double Hierarchies by Triple Choice 306

9.10 CYBOL Template Diagram (TD) Proposal . 308

9.11 CYBOL Model Diagram (MD) Proposal . 309

9.12 CYBOL Organisation Diagram (OD) Proposal 310

9.13 CYBOL Communication Diagram (CD) Proposal 311

10.1 CYBOI Architecture consisting of Four Parts . 315

10.2 CYBOI Part Dependencies and Control Flow . 322

14.3 Figures 441

10.3 Input-to-Output Model Transition . 325

11.1 FLOSS Development Portals . 332

11.2 Portal Services . 333

11.3 Applications Grouped around an Electronic Health Record Core 340

11.4 Medical Informatics Working Groups of DIN/ CEN/ ISO [283] 341

11.5 Early Record Module . 359

11.6 Nested Views of Module Frames . 360

11.7 Topological Documentation in Record Module [31] 361

11.8 ResAdmin Knowledge Models (Extract) . 363

11.9 Simple Web User Interface of the ResAdmin Module [141] 364

12.1 Knowledge Triumvirate with Schema, Template and Model 375

12.2 Common Knowledge Abstraction useable by many SEP Phases 376

13.1 Comparison of a traditional SEP with CYBOM 386

14.4 Tables 443

14.4 Tables

3.1 Systematics of Abstract System Concepts . 26

3.2 Vertical and Horizontal Application Types [11] 40

4.1 UML 2.x Diagram Types [6] . 128

4.2 Taxonomic Classification of the Animal Kingdom 151

4.3 Structural Elements of an ADL-defined Archetype [21] 155

6.1 Brain Structures in Analogy to a Computer [52] 177

7.1 Materiality of Language, according to Five Human Senses [39] 212

7.2 Pattern Systematics . 215

7.3 Hierarchical Structuring of Biological Systems 231

7.4 Logical Book . 231

7.5 System of Sciences . 232

7.6 Car Model . 232

7.7 Astronomical Particles . 233

7.8 Physical Particles . 233

8.1 Effects as Basis of Sensing . 252

9.1 Mapping Classical Containers to CYBOL . 301

10.1 Analogies between the Java- and CYBOP World 314

11.1 Student Works [256] . 358

14.5 History 445

14.5 History

For those who are interested in how I came to develop the concepts that were introduced in

this document, I have created this small history of events and enlightening ideas.

1986 Although having difficulties, my father manages to cross the border to West-Germany

by visiting some relatives. He also manages to come back into the East :-) and a

present I get is a brand-new Commodore 64 home computer. I mostly play games on

it but also do my first steps in programming with BASIC.

1988 In the late days of East Germany, new computer subjects are introduced at schools.

So I take part in them and continue learning BASIC and some dBASE.

1990 At the Technical University of Ilmenau, one of the first subjects in my study is Algo-

rithms and Programming where we learn structural programming in Turbo Pascal.

1993 During my year abroad at Sussex University in Brighton, England, I come in touch

with the Internet (email) and UNIX machines.

1994 Back in Germany, I start administrating the information infrastructure in my parents’

medical practice, learn about Computer Hardware and wonder about how doctors are

cheated with overpriced products and services.

1995 In the German c’t computer magazine, I develop an announcement of a new operating

system called Linux. I order and install my first distribution, SuSE November 1995.

1995 We have a quite theoretical lecture on Object Oriented Programming in Smalltalk.

However, that is the first time I hear about those (then still new) programming con-

cepts.

1996 During my student’s research project and diploma work, I implement parts of a Neural

Network in Object Pascal (Delphi).

1998 First steps in C++ at my first employer HM Informatics.

1999 At OWiS Software, I learn to change my thinking away from only the source code –

towards the actual Concepts and Architecture behind a software. I also learn how to

use the Unified Modeling Language (UML).

2000 Recognising the opening of the SourceForge developer portal in 1999, I set up the Res

Medicinae project in April 2000. It aims at creating a Medical Software for physicians.

Preparation, website, investigation on similar projects and so on take months.

446 14 Appendices

2000 My Java knowledge can be manifested at Intershop Communications where we are

building solutions for e-commerce (Web Client-Server Applications).

2001 I visit my first Free and Open Source Software Developers’ Meeting (FOSDEM) in

Brussels, Belgium, where Richard M. Stallman of the Free Software Foundation (GNU

project) holds a talk.

2001 Returned to my former university, I start active coding on Res Medicinae in April

2001. It takes some time to handle the Concurrent Versions System (CVS).

2001 Following the standard approach and several Java Tutorials, my first application is

nothing more than a main method which creates a Java Swing JFrame.

2001 Stepwise, I start moving out code into special classes, like for example all GUI code

into a class Frame.

2001 Soon I loose overview and realise the need for some clearer structure. I remember

the Design Patterns applied at my former employers and start using the Model View

Controller (MVC) and further patterns.

2001 Since flexibility is one of the most important aims of my efforts, I realise the short-

comings of MVC and the Observer pattern (bidirectional dependencies), especially

when it comes to web applications. A good solution I find is the Hierarchical Model

View Controller (HMVC) design pattern, applied by the Scope free software project.

2002 My disposedness to style guides, clean and well-documented code lets me structure

and order every method and attribute and check them all for NULL pointer errors

and other exceptions. I find out that every attribute not only needs a set and get

method, but also a create and destroy method. Class names as type information are

handed over to the create method in form of a string.

2002 Following the idea of create and destroy methods, I come across the Component

Lifecycle, described by the Apache-Jakarta project. I change all code by applying

Lifecycle Methods.

2002 Having read the OpenEHR Design Document, I know that classes should be grouped

in layers with clear dependencies, called an Ontology. Higher-layer objects consist

of objects from lower-level layers, but not the other way. I restructure my code by

moving all classes into new packages (directories), each representing an Ontological

Level.

2002 Apache’s lifecycle Concerns turn out to be useless. They only break the ontology rack

and violate its dependency rules by connecting otherwise strictly separated system

14.5 History 447

parts. Moreover, concerns encourage the inheritance of redundant or overlapping

properties. The same counts for variations like Aspects and Interfaces in general. I

replace them all by pure Classes, following the ontology structure.

2002 I begin to realise that not only View (MVC) and Controller (HMVC) are hierarchical,

but also the Model (Knowledge/ Domain) is. In many days and weeks of intensive

thinking I find that – as in Universe – actually every other software component is

hierarchical, too. Consequently, I introduce one top-most super (meta) class Item

that represents a simple Tree (Map container). Inheriting classes do not need to

implement create, destroy, set or get methods any longer since they inherit them from

Item. This saves me hundreds of lines of code, at once, and improves clearness a lot.

And this is my personal Break-Through. From now on, I first think about nature and

its concepts and then implement software source code. Suddenly, everything seems easier, I

have an Example, a Way-to-go: Nature. There aren’t less (rather more) tasks to solve now,

but at least the direction is clear.

2002 By applying the new concepts, one difference gets very clear: System Control- and

Domain Model code are both hierarchical, but different ontologies need to be defined

for them. An active system works on a passive model, that is it depends on it. While a

system provides the means for input and output and controls the Action (Workflow),

a model just represents domain data. Searching for parallels in nature, I find that

Human Body and Human Brain correspond to System and Model. What humans

(possibly unconsciously) want to do is to imitate themselves, with robots as with

computers as with other machines, tools or abstractions.

2002 The overall structure of the Framework seems clear now. There will be three major

parts, Basic, Model and System. Model and System both depend on the fundamental

abstractions of the Basic package which encapsulates programming language types.

In addition, System depends on Model.

2003 Encountering difficulties in synchronising Frontend and Backend, I come to the con-

clusion that they are actually the same, passive data models that have to be translated

into each other. It is not necessary – even badly wrong – to apply different design pat-

terns for their implementation. I change inheritances and dependencies of many of my

framework classes so that finally Knowledge-/ Domain-, Backend-, Communication-

and Frontend models are of the same super type. This decision opens unforeseen new

possibilities. All kinds of frontends, all communication and backend mechanisms can

now be implemented modular and flexible.

448 14 Appendices

2003 Java’s event handling using ActionListener interfaces ignores the dependencies be-

tween ontological layers and is thus improper (just like the concern interfaces men-

tioned above). I implement a new Signal Handling mechanism which is oriented on

parts of a sentence in human language like Subject, Predicate, Object.

2003 I realise how far I have moved away from my original aim of writing a small medical

application. While implementing the new signal handling mechanism it gets clear that

I move more and more towards the operating system and its hardware input/ output

handling code which scares me a bit. But there seems to be no other way to go when

aiming at the creation of clear, easy, modular, flexible, correct systems.

2003 Exceptions are system-internal Signals. It is not necessary to use an extra signalling

mechanism for exception handling. And it is dangerous for security if an instance

knows about its parent to bubble up an exception. For now, I remove all exceptions

besides the standard one, which again saves me many lines of unnecessary code.

2003 An abstract model has multiple properties. Not only it keeps references to its parts

(attributes) and procedures (methods), but also it knows about the Model and Posi-

tion (and possibly more Meta properties) of each part.

2003 After difficulties with the item meta model, I realise that I actually want to replace the

standard Class Concept offered by Java and other Object Oriented languages. It takes

me some weeks of thinking to find the reason and way out: Traditional programming

mixes Knowledge with the Handling of its instances. Both need to be separated. I

move most classes to XML-based Model files and call their specification Cybernetics

Oriented Language (CYBOL).

Here begins a New Era. From now on, business domain Knowledge and hardware-close

System Control code are stored separately and treated differently. The concepts to store

static knowledge are very different from those that are used to dynamically control a system’s

hardware.

2003 Later comparisons with biology support my theory. The genetic information is static

knowledge that gets forwarded from one cell to another, during Cell Separation. The

dynamic processing of that knowledge, that is the creation and functioning of or-

ganelles is a completely different issue. In a similar manner, application knowledge

has to become transportable between different platforms and absolutely independent

from hardware.

14.5 History 449

2003 Since the time when I first experimented with lifecycle methods à la Apache Jakarta,

I had used a configure method in my code which could read external configuration

files and configure internal items accordingly. Nothing different was needed to read

CYBOL files. They represented the whole application configuration knowledge and

only had to be interpreted correctly. The remaining Java code therefore not only

had to contain system control functionality, but also had to be able to read and write

knowledge in form of CYBOL files. For that reason, it was called Cybernetics Oriented

Interpreter (CYBOI).

2003 In search for new concepts and ideas, I also read about a number of philosophical

theories from Aristotle, Leibnitz and others and can identify a mistake in my thinking:

the important separation is not between Body and Brain as presumed before, it is

between Body/Brain and Mind ! Neural Networks try to imitate the functioning of

the physical brain, but what I wanted to do is to imitate concepts of the logical mind,

of human thinking.

2003 Reading a magazine about psychology and neurology, I come to reflect the principles

of Human Thinking. I see parallels to basic concepts of software modelling and try to

connect them. As result, I can identify three fundamental kinds of abstraction that our

brain uses to understand its real-world environment: Discrimination, Categorisation

and Composition. Software developers apply these concepts all the time.

2003 From previous reflections I recall that a Whole item knows about the properties of

its Part items. I try to identify such meta properties, read about Shape, Depth,

Movement as well as Colour in my Psychology literature and finally stumble about

Dimensions as known from physics. The position and extension that part items span

up within their whole item do not only exist in Space and Time, but possibly also in

other kinds of dimensions like Mass or Force.

2003 Since CYBOL contains all concepts that are necessary to model knowledge, including

Categorisation (inheritance), a CYBOI written in Java causes unnecessary overhead.

The interpreter’s main tasks (input/ output- and memory handling as well as process-

ing instructions) are anyway situated close to hardware so that I start to reimplement

CYBOI in the C programming language.

2004 An open problem that had caused me many headaches was the handling of instruc-

tions. I remember the unification of communication models which represented States

that could be transformed into each other by help of Translators. Journeys into Sys-

tems Theory and a consideration of the Black Box concept show the solution: State

450 14 Appendices

and Logic knowledge need to be separated! The logic contains the rules (algorithms,

operations) after which an input state is translated into an output state. It takes con-

siderable thinking to figure out a common CYBOL structure capable of representing

states as well as logic.

2004 The early CYBOL definition turns out to be insufficient. In hot but constructive

discussions with Rolf Holzmueller, one of my students, the reason gets clearer and

clearer to me: CYBOL must consider two different hierarchies in just one model. One

Model Hierarchy represents the compound model as such. A second Meta Hierarchy

holds meta information that a Whole knows about its Parts. The old CYBOL tried to

put everything into XML attributes. The new CYBOL uses XML attributes to link to

parts and XML tags to model meta information such as Properties and Constraints.

2004 A lot of time goes into the implementation of CYBOI. Techniques that have to be

considered are, among others: signalling, threads, UNIX and TCP/IP sockets.

2005 While implementing a CYBOL prototype application, standard programming con-

structs such as for Branching and Looping are badly missing. It takes some reflexion

to decompose these into their actual elements and to provide the corresponding CY-

BOL operations by using simple flags.

2005 A further problem is the automatic indexing of Parts belonging to a common list

within a Whole model, for which a special Name Structure has to be defined and

additional CYBOI routines have to be written.

2005 It turns out to be problematic to use existing Graphical User Interface (GUI) frame-

works for input/ output (i/o). Many of them base on OOP principles; all require

the adoption of special structures. Since the first version of CYBOI is developed un-

der the Linux Operating System (OS), low-level X Window System Libraries (Xlibs)

functions are used instead of a toolkit.

2005 The reception of signals (input) is moved into special threads, one for graphical-,

one for textual user interfaces, one for sockets etc. But how can CYBOI handle

these signals, if it has no application knowledge? The solution is to, as property of

the receive operation, hand over a node of the knowledge tree containing possible

commands to react to, which are mapped to their corresponding handler operations,

in CYBOL.

2006 Within two months of being unemployed, I review the implementation of input/ output

(i/o) threads, and can correct open conflicts by using Mutual Exclusion (Mutex) flags.

Also, Central Processing Unit (CPU) busy states are now avoided.

14.5 History 451

2006 Branches of the runtime knowledge tree are pointed to by dot-separated names. Since

sometimes, it is necessary to address meta information (such as the colour of a menu

item) directly, the knowledge path gets extended by a second separation character,

which allows to distinguish between whole-part and meta elements.

2006 At the time of writing this, open issues yet to be implemented are, for example: compil-

ing CYBOI under Windows OS and making use of their GUI functionality; improving

the GUI layout and providing a GUI theme infrastructure; specifying serialisation in

more detail. For further tasks, see section 14.7!

14.6 Migration to CYBOL 453

14.6 Migration to CYBOL

Developers who have developed an interest in the CYBOP concepts may eventually want

to switch their systems to the CYBOL programming language. This section tries to provide

these developers with the necessary steps (something like a Hands-on Guide) that allow a

(more or less) careful Migration. Careful means that after each step, one should have a

running system again, before taking the next step.

The guidelines are especially suited for developers with experience in object oriented tech-

niques, ideally programming in Java. Some knowledge in component oriented programming

(such as lifecycle methods) will be helpful in understanding and implementing the following

recommendations.

Caution! This migration guide is ad hoc and has not been tested. Use at your own risk!

- Use solely one single Exception class. Eliminate any other special exception classes.

- Make sure that instances are only created by special create methods, one for every

attribute. Eliminate all wild calls of the new operator that are spread over the code.

- Create four methods for each attribute (here called sample): createSample, destroySam-

ple, setSample and getSample.

- Collect all create methods that are called during system startup and put them into a

method initialise that is called at startup.

- Introduce a method finalise as counterpart to initialise and call the destroy method

of every attribute there. This finalise method should be called at system shutdown.

- Insert a new categorise method which is called before initialise, at system startup.

Move all configuration code there.

- Insert a method decategorise as counterpart to categorise. It should be called at

system shutdown, after the finalise method. Save (write) any configuration settings

there.

- Introduce your own top-most framework class Item that all other classes inherit from.

This is somewhat difficult. Several classes in a Java application need to inherit from

standard JDK classes. For now, only let those classes inherit from Item which cur-

rently have no (that is the java.lang.Object) or an own class as parent.

454 14 Appendices

- Add the lifecycle methods categorise, decategorise, initialise and finalise to the Item

class. All subclasses which use any of these methods should also call the superclass’

implementation of the used method.

- Build a general create method capable of creating instances from a class name that

was handed over as string parameter. This method should determine a class with

Class c = Class.forName(classnameAsString). The instance will then be created

using c.newInstance().

- Try to fix certain classes (ideally only one called Controller) whose task it will be to

catch events. Let this class implement all event interfaces used by the system and

also implement the necessary event handling methods, enforced by the interfaces.

- Add a method handle to the Controller class which is called by all other handling

methods. It receives an event as parameter and contains simple if-then comparisons

to filter out the single events and call a method which finally processes the event.

- Move as much method (not lifecycle method) functionality as possible into the Con-

troller class.

- Structure all other (domain) model classes hierarchically. Make sure only unidirec-

tional dependencies exist among them.

- Let the Item class encapsulate two additional attributes of type java.lang.Object and

javax.swing.MutableTreeNode. Add the corresponding set and get methods.

- Implement or use an XML Handler for reading and writing CYBOL/ XML files.

- Move hierarchical domain model classes into CYBOL code. The java code is respon-

sible for reading, altering and writing CYBOL files.

- Now structure methods hierarchically as well and move them into CYBOL code.

- It is now probably easier to use the CYBOI interpreter (written in C) than to further

maintain your own interpreter (written in Java).

- That’s it. Corrections, hints and improvements are very welcome!

14.7 Call for Developers 455

14.7 Call for Developers

CYBOP ’s concepts want to ease application programming. From now on, developers can

focus on pure domain knowledge, which they encode in form of CYBOL (XML) models. For

this to become possible, a lot of standard functionality had (and has) to be integrated into the

CYBOI interpreter. It does contain (or will so in future) firstly, all kinds of communication

mechanisms and secondly, more and more hardware control functionality.

For our CYBOP Free/ Open Source Software (FOSS) project, we therefore steadily look for

developers with interest in one of the following topics:

- Graphical User Interface (GUI) Design: Experience with toolkits like Qt, GTK,

wxWindows, Tcl/Tk or the like may be helpful, but does CYBOI itself not use these.

It integrates low-level graphics routines which currently base on the Xlibs libraries for

UNIX’ X Window System (XFree86). The corresponding functionality is still missing

for other platforms like MS Windows or Apple Macintosh OS X.

- Textual User Interface (TUI) Design: Experience with libraries such as ncurses or

slang may be helpful. For CYBOI, however, low-level Console/ Terminal program-

ming is necessary.

- Web User Interface (WUI) Design: In CYBOI, pure CYBOL models get translated

into pure HTML models. There is no mix-up of HTML with other code, as known

from JSP or PHP. Although knowledge of the latter and related technologies like

JavaScript may be helpful, these are not used in CYBOI.

- Socket Communication: Sockets are essential for system communication. They differ

slightly between platforms and not all kinds have been implemented in CYBOI yet.

Some experience with UNIX file-, Win- and TCP sockets is needed.

- Database Communication: Traditional mechanisms like ODBC or JDBC ease and

standardise the communication with database systems. It still needs to be figured out

whether to use these or better to write our own low-level SQL statements in CYBOI.

- Data Conversion: Different kinds of communication require different data transfer

models. The same counts for persistently storing data in various file formats. There-

fore, a huge number of parsers/ serialisers and CYBOL encoders/ decoders will be

needed. Experience with import/ export filters and file format conversion is very

welcome.

456 14 Appendices

- OS Concepts: CYBOI is the active core system managing passive knowledge models

and running directly on an Operating System (OS) or Hardware. It already provides

signalling and prioritising itself and further OS concepts are planned to be integrated,

wherever useful. Help in this would be appreciated.

If you think you might like to work on one of these topics, or just want to try out and

learn by doing, or have further questions, just check out our website http://www.cybop.net

or contact one of the mailing lists mentioned there!

14.8 Abstract 457

14.8 Abstract

In today’s society, information and knowledge increasingly gain in importance. Software as

one form of knowledge abstraction plays an important role thereby. The main difficulty in

creating software is to cross the abstraction gap between concepts of human thinking and

the requirements of a machine-like representation.

Conventional paradigms of software design have managed to increase their level of abstrac-

tion, but still exhibit quite a few weaknesses. This work compares and improves traditional

concepts of software development through ideas taken from other sciences and phenomenons

of nature, respectively – therefore its name: cybernetics-oriented.

Three recommendations resulting from this inter-disciplinary approach are: (1) a strict sepa-

ration of active system-control software from pure, passive knowledge; (2) the usage of a new

schema for knowledge representation, which is based on a double-hierarchy modelling whole-

part relationships and meta information in a combined manner; (3) a distinct treatment of

knowledge models representing states from those containing logic.

For representing knowledge according to the proposed schema, an XML-based language

named CYBOL was defined and a corresponding interpreter called CYBOI developed. De-

spite its simplicity, CYBOL is able to describe knowledge completely. A Free-/ Open Source

Software project called Res Medicinae was founded to proof the general operativeness of

the CYBOP approach.

CYBOP offers a new theory of programming which seems to be promising, since it not only

eliminates deficiencies of existing paradigms, but prepares the way for more flexible, future-

proof application systems. Because of its easily understandable concept of hierarchy, experts

are put in a position to, themselves, actively contribute to application development. The

implementation phase found in classical software engineering processes becomes superfluous.

Keywords

Cybernetics Oriented Programming (CYBOP), Knowledge Schema, Ontology, XML-based

Programming, Free- and Open Source Software (FOSS), Res Medicinae, Electronic Health

Record (EHR), Software Pattern, Programming Paradigm, Software Engineering Process

(SEP)

458 14 Appendices

Information

Author: Dipl.-Ing. Christian Heller, Technical University of Ilmenau, Germany

Supervisor 1: Prof. Dr.-Ing. habil. Ilka Philippow (Chair), Technical University of Ilmenau,

Germany

Supervisor 2: Prof. Dr.-Ing. habil. Dietrich Reschke, Technical University of Ilmenau,

Germany

Supervisor 3: Mark Lycett (PhD), Brunel University, Great Britain

Submission: 2005-12-12; Presentation: 2006-10-04

14.9 Kurzfassung 459

14.9 Kurzfassung

Informationen und Wissen gewinnen in der heutigen Gesellschaft zunehmend an Bedeutung.

Software als eine Form der Abstraktion von Wissen spielt dabei eine entscheidende Rolle. Die

Hauptschwierigkeit beim Erstellen von Software besteht in der Überbrückung der Diskrepanz

zwischen menschlichen Denkkonzepten und den Erfordernissen einer maschinellen Darstel-

lung.

Herkömmliche Paradigmen des Software-Designs haben ihr Abstraktionsniveau in der Ver-

gangenheit erheblich steigern können, weisen allerdings immer noch etliche Schwächen auf.

Diese Arbeit vergleicht und verbessert traditionelle Konzepte der Software-Entwicklung

durch Denkansätze anderer Wissenschaftsgebiete bzw. Phänomene der Natur – daher ihre

Bezeichnung: Kybernetik-orientiert.

Im Ergebnis dieser interdisziplinären Herangehensweise stehen dreierlei Empfehlungen: (1)

eine strikte Trennung aktiver Systemkontroll-Software von purem, passivem Wissen; (2) die

Verwendung eines Schemas zur Wissens-Repräsentation, welches auf einer Doppel-Hierarchie

zur kombinierten Darstellung von Teil-Ganzes-Beziehungen und Meta-Informationen beruht;

(3) eine getrennte Behandlung jener Wissens-Modelle, die einen Zustand verkörpern, von

solchen, die Logik enthalten.

Zur Darstellung von Wissen gemäß dem vorgeschlagenen Schema wurde eine XML-basierende

Sprache namens CYBOL definiert und ein dazugehöriger Interpreter genannt CYBOI en-

twickelt. Trotz ihrer Schlichtheit ist CYBOL in der Lage, Wissen komplett zu beschreiben.

Als Prototyp zum Nachweis der prinzipiellen Funktionsfähigkeit des CYBOP-Ansatzes wurde

Res Medicinae, ein Free-/ Open Source Software Projekt, ins Leben gerufen.

CYBOP bietet eine neue Theorie des Programmierens, die durchaus vielversprechend zu sein

scheint, da sie nicht nur Mankos bestehender Paradigmen beseitigt, sondern vor allem flexi-

blere, zukunftssichere Anwendungen ermöglicht. Durch das leicht zu verstehende Hierarchie-

Konzept werden Fach-Experten in die Lage versetzt, selbst aktiv an der Anwendungs-

Entwicklung mitzuwirken. Die in klassischen Software-Entwicklungs-Prozessen zu findende

Implementierungsphase entfällt.

460 14 Appendices

Schlagworte

Kybernetik-Orientierte Programmierung (CYBOP), Wissens-Schema, Ontologie, XML-basierende

Programmierung, Freie und Quell-offene Software (FOSS), Res Medicinae, Elektronische

Kranken-Akte (EHR), Software Muster, Programmier-Paradigma, Software Entwicklungs-

Prozess (SEP)

Informationen

Autor: Dipl.-Ing. Christian Heller, Technische Universität Ilmenau

Gutachter 1: Prof. Dr.-Ing. habil. Ilka Philippow (Mentorin), Technische Universität

Ilmenau

Gutachter 2: Prof. Dr.-Ing. habil. Dietrich Reschke, Technische Universität Ilmenau

Gutachter 3: Mark Lycett (PhD), Brunel University, Großbritannien

Einreichung: 2005-12-12; Verteidigung: 2006-10-04

14.10 Licences 461

14.10 Licences

14.10.1 GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991. Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom

to share and change free software–to make sure the software is free for all its users. This

General Public License applies to most of the Free Software Foundation’s software and to

any other program whose authors commit to using it. (Some other Free Software Foundation

software is covered by the GNU Library General Public License instead.) You can apply it

to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it in new free programs;

and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these

rights or to ask you to surrender the rights. These restrictions translate to certain respon-

sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this

license which gives you legal permission to copy, distribute and/or modify the software.

462 14 Appendices

Also, for each author’s protection and ours, we want to make certain that everyone under-

stands that there is no warranty for this free software. If the software is modified by someone

else and passed on, we want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in

effect making the program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICA-

TION

0. This License applies to any program or other work which contains a notice placed by

the copyright holder saying it may be distributed under the terms of this General Public

License. The ”Program”, below, refers to any such program or work, and a ”work based

on the Program” means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it, either verbatim or with

modifications and/or translated into another language. (Hereinafter, translation is included

without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License;

they are outside its scope. The act of running the Program is not restricted, and the output

from the Program is covered only if its contents constitute a work based on the Program

(independent of having been made by running the Program). Whether that is true depends

on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of

the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for a fee.

14.10 Licences 463

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modifications or work under the

terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no charge

to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must

cause it, when started running for such interactive use in the most ordinary way, to print

or display an announcement including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this License. (Exception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Program, and can be reasonably considered independent and

separate works in themselves, then this License, and its terms, do not apply to those sections

when you distribute them as separate works. But when you distribute the same sections as

part of a whole which is a work based on the Program, the distribution of the whole must

be on the terms of this License, whose permissions for other licensees extend to the entire

whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work

written entirely by you; rather, the intent is to exercise the right to control the distribution

of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program

(or with a work based on the Program) on a volume of a storage or distribution medium

does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided that you

also do one of the following:

464 14 Appendices

a) Accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Sections 1 and 2 above on a medium customarily used for

software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,

for a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms

of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if

you received the program in object code or executable form with such an offer, in accord

with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications

to it. For an executable work, complete source code means all the source code for all

modules it contains, plus any associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a special exception, the

source code distributed need not include anything that is normally distributed (in either

source or binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself accompanies

the executable.

If distribution of executable or object code is made by offering access to copy from a des-

ignated place, then offering equivalent access to copy the source code from the same place

counts as distribution of the source code, even though third parties are not compelled to

copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute

the Program is void, and will automatically terminate your rights under this License. How-

ever, parties who have received copies, or rights, from you under this License will not have

their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the Program), you indicate

your acceptance of this License to do so, and all its terms and conditions for copying,

14.10 Licences 465

distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for

any other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they do

not excuse you from the conditions of this License. If you cannot distribute so as to satisfy

simultaneously your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Program at all. For example, if a patent license

would not permit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this

License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-

stance, the balance of the section is intended to apply and the section as a whole is intended

to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

protecting the integrity of the free software distribution system, which is implemented by

public license practices. Many people have made generous contributions to the wide range

of software distributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to distribute software

through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of

the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Program

under this License may add an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries not thus excluded. In

such case, this License incorporates the limitation as if written in the body of this License.

466 14 Appendices

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of this License which applies to it and ”any later version”, you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribu-

tion conditions are different, write to the author to ask for permission. For software which

is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two goals of pre-

serving the free status of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-

BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITH-

OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE

QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO

IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE,

BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-

CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH

14.10 Licences 467

ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and

change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source file to most effectively convey the exclusion of warranty; and each file

should have at least the ”copyright” line and a pointer to where the full notice is found.

One line to give the program’s name and an idea of what it does. Copyright (C) yyyy name

of author

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-

RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;

if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,

MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with AB-

SOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are

welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other

468 14 Appendices

than ‘show w’ and ‘show c’; they could even be mouse- clicks or menu items–whatever suits

your program.

You should also get your employer (if you work as a programmer) or your school, if any,

to sign a ”copyright disclaimer” for the program, if necessary. Here is a sample; alter the

names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which

makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to permit

linking proprietary applications with the library. If this is what you want to do, use the

GNU Library General Public License instead of this License.

14.10 Licences 469

14.10.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000, 2001, 2002. Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

TERMS AND CONDITIONS

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful

document “free” in the sense of freedom: to assure everyone the effective freedom to copy

and redistribute it, with or without modifying it, either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way to get credit for their

work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document

must themselves be free in the same sense. It complements the GNU General Public License,

which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free

software needs free documentation: a free program should come with manuals providing the

same freedoms that the software does. But this License is not limited to software manuals; it

can be used for any textual work, regardless of subject matter or whether it is published as a

printed book. We recommend this License principally for works whose purpose is instruction

or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice

placed by the copyright holder saying it can be distributed under the terms of this License.

Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The “Document”, below, refers to any such manual

or work. Any member of the public is a licensee, and is addressed as “you”. You accept

470 14 Appendices

the license if you copy, modify or distribute the work in a way requiring permission under

copyright law.

A “Modified Version” of the Document means any work containing the Document or a

portion of it, either copied verbatim, or with modifications and/or translated into another

language.

A “Secondary Section” is a named appendix or a front-matter section of the Document

that deals exclusively with the relationship of the publishers or authors of the Document

to the Document’s overall subject (or to related matters) and contains nothing that could

fall directly within that overall subject. (Thus, if the Document is in part a textbook of

mathematics, a Secondary Section may not explain any mathematics.) The relationship

could be a matter of historical connection with the subject or with related matters, or of

legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being

those of Invariant Sections, in the notice that says that the Document is released under this

License. If a section does not fit the above definition of Secondary then it is not allowed

to be designated as Invariant. The Document may contain zero Invariant Sections. If the

Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or

Back-Cover Texts, in the notice that says that the Document is released under this License.

A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25

words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a

format whose specification is available to the general public, that is suitable for revising

the document straightforwardly with generic text editors or (for images composed of pixels)

generic paint programs or (for drawings) some widely available drawing editor, and that is

suitable for input to text formatters or for automatic translation to a variety of formats

suitable for input to text formatters. A copy made in an otherwise Transparent file format

whose markup, or absence of markup, has been arranged to thwart or discourage subsequent

modification by readers is not Transparent. An image format is not Transparent if used for

any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,

Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD,

and standard-conforming simple HTML, PostScript or PDF designed for human modifica-

14.10 Licences 471

tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by proprietary word processors,

SGML or XML for which the DTD and/or processing tools are not generally available, and

the machine-generated HTML, PostScript or PDF produced by some word processors for

output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages

as are needed to hold, legibly, the material this License requires to appear in the title page.

For works in formats which do not have any title page as such, “Title Page” means the text

near the most prominent appearance of the work’s title, preceding the beginning of the body

of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either

is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in

another language. (Here XYZ stands for a specific section name mentioned below, such

as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the

Title” of such a section when you modify the Document means that it remains a section

“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this

License applies to the Document. These Warranty Disclaimers are considered to be included

by reference in this License, but only as regards disclaiming warranties: any other implication

that these Warranty Disclaimers may have is void and has no effect on the meaning of this

License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-

mercially, provided that this License, the copyright notices, and the license notice saying

this License applies to the Document are reproduced in all copies, and that you add no

other conditions whatsoever to those of this License. You may not use technical measures to

obstruct or control the reading or further copying of the copies you make or distribute. How-

ever, you may accept compensation in exchange for copies. If you distribute a large enough

number of copies you must also follow the conditions in section Copying in Quantity.

You may also lend copies, under the same conditions stated above, and you may publicly

display copies.

472 14 Appendices

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of

the Document, numbering more than 100, and the Document’s license notice requires Cover

Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

covers must also clearly and legibly identify you as the publisher of these copies. The front

cover must present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition. Copying with changes limited to the

covers, as long as they preserve the title of the Document and satisfy these conditions, can

be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the

first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto

adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you

must either include a machine-readable Transparent copy along with each Opaque copy, or

state in or with each Opaque copy a computer-network location from which the general

network-using public has access to download using public-standard network protocols a

complete Transparent copy of the Document, free of added material. If you use the latter

option, you must take reasonably prudent steps, when you begin distribution of Opaque

copies in quantity, to ensure that this Transparent copy will remain thus accessible at the

stated location until at least one year after the last time you distribute an Opaque copy

(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an

updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of

sections Verbatim Copying and Copying In Quantity above, provided that you release the

Modified Version under precisely this License, with the Modified Version filling the role of the

Document, thus licensing distribution and modification of the Modified Version to whoever

possesses a copy of it. In addition, you must do these things in the Modified Version:

14.10 Licences 473

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be

listed in the History section of the Document). You may use the same title as a

previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for

authorship of the modifications in the Modified Version, together with at least five

of the principal authors of the Document (all of its principal authors, if it has fewer

than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the

publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form

shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover

Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version as

given on the Title Page. If there is no section Entitled “History” in the Document,

create one stating the title, year, authors, and publisher of the Document as given

on its Title Page, then add an item describing the Modified Version as stated in the

previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the “History”

section. You may omit a network location for a work that was published at least four

years before the Document itself, or if the original publisher of the version it refers to

gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title

of the section, and preserve in the section all the substance and tone of each of the

contributor acknowledgements and/or dedications given therein.

474 14 Appendices

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in

their titles. Section numbers or the equivalent are not considered part of the section

titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in

the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in

title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as

Secondary Sections and contain no material copied from the Document, you may at your

option designate some or all of these sections as invariant. To do this, add their titles to

the list of Invariant Sections in the Modified Version’s license notice. These titles must be

distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-

ments of your Modified Version by various parties–for example, statements of peer review

or that the text has been approved by an organization as the authoritative definition of a

standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.

Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or

through arrangements made by) any one entity. If the Document already includes a cover

text for the same cover, previously added by you or by arrangement made by the same entity

you are acting on behalf of, you may not add another; but you may replace the old one, on

explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to

use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under

the terms defined in section Modifications above for modified versions, provided that you

include in the combination all of the Invariant Sections of all of the original documents,

14.10 Licences 475

unmodified, and list them all as Invariant Sections of your combined work in its license

notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical

Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections

with the same name but different contents, make the title of each such section unique by

adding at the end of it, in parentheses, the name of the original author or publisher of that

section if known, or else a unique number. Make the same adjustment to the section titles

in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original

documents, forming one section Entitled “History”; likewise combine any sections Entitled

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections

Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under

this License, and replace the individual copies of this License in the various documents with

a single copy that is included in the collection, provided that you follow the rules of this

License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually

under this License, provided you insert a copy of this License into the extracted document,

and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent

documents or works, in or on a volume of a storage or distribution medium, is called an

“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights

of the compilation’s users beyond what the individual works permit. When the Document

is included in an aggregate, this License does not apply to the other works in the aggregate

which are not themselves derivative works of the Document.

If the Cover Text requirement of section Copying In Quantity is applicable to these copies

of the Document, then if the Document is less than one half of the entire aggregate, the

476 14 Appendices

Document’s Cover Texts may be placed on covers that bracket the Document within the

aggregate, or the electronic equivalent of covers if the Document is in electronic form. Oth-

erwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the

Document under the terms of section Modifications. Replacing Invariant Sections with

translations requires special permission from their copyright holders, but you may include

translations of some or all Invariant Sections in addition to the original versions of these

Invariant Sections. You may include a translation of this License, and all the license notices

in the Document, and any Warranty Disclaimers, provided that you also include the original

English version of this License and the original versions of those notices and disclaimers. In

case of a disagreement between the translation and the original version of this License or a

notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,

the requirement (section Modifications) to Preserve its Title (section Applicability and Def-

initions) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-

vided for under this License. Any other attempt to copy, modify, sublicense or distribute the

Document is void, and will automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-

umentation License from time to time. Such new versions will be similar in spirit to

the present version, but may differ in detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

14.10 Licences 477

Each version of the License is given a distinguishing version number. If the Document

specifies that a particular numbered version of this License “or any later version” applies

to it, you have the option of following the terms and conditions either of that specified

version or of any later version that has been published (not as a draft) by the Free Software

Foundation. If the Document does not specify a version number of this License, you may

choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the

document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify

this document under the terms of the GNU Free Documentation License, Version 1.2 or any

later version published by the Free Software Foundation; with no Invariant Sections, no

Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.”

line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being

LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,

merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing

these examples in parallel under your choice of free software license, such as the GNU General

Public License, to permit their use in free software.

14.11 Index

1 Tier, 27

1:1 Association Patterns, 214, 216

1:n Association Patterns, 214, 216

2 Tiers, 28

3 Tiers, 30

4+1 View Model of Architecture, 22

4GL, 374

A Changing World, 243

A new Kind of Science, 199

ABDA, 346

Abrechnungs Datenträger, 346

Abstract Class, 68

Abstract Information, 49

Abstract Levels of a Virtual Machine, 48

Abstract Model, 1

Abstract System Concepts, 26

Abstract Window Toolkit, 109

Abstract Windowing Toolkit, 362

Abstraction, 388

Abstraction Gaps, 4, 19, 376

Abstractions, 13

Abstractions of Human Thinking, 202

Access Control List, 319

Access Method, 70

Access Method Elimination, 225

ACL, 120, 138, 144, 319

ACR, 352

Action Pattern, 97

Active Application (Tool), 187

Active Component, 120

ActiveX, 32

Activity, 243

Activity Diagram, 127

Acyclic Graph, 102

ADA, 353

Adaptability, 2

Adapter Pattern, 98

Adaptive Software Development, 16

Address Space, 26

ADL, 22, 153, 155, 185

ADT, 346

Advice, 117

AE, 122, 187

Agent, 109, 120, 189, 250

Agent as Social System, 256

Agent Communication Language, 120, 138, 144

Agent Oriented Programming, 109, 120, 138,

189, 250

Agent Programming Language of AGOP, 189

Agent0 Language, 120

Agile Alliance, 16

Agile Manifesto, 16

Agile Methodologies, 16

Agile Software Development, 13

AGOP, 109, 120, 138, 189, 250

AI, 60, 138, 145, 205, 221

Algol, 57

Algorism, 213

Algorithm, 209, 265

Allocated Area, 76

Allocation, 52

Alternative, 53

ALU, 50

AM, 155, 185

Ambulant Operieren Datenträger, 346

Amelioration Pattern, 79

American College of Radiology, 352

American Dental Association, 353

480 14 Appendices

AMR, 335

Analogue Electronic Component, 49

Analysis, 14, 19, 376

Analysis Pattern, 79, 92, 155

Analysis Phase, 122

AND Operation, 246, 266

Animalic Nerve System, 250

Animate World, 243

ANN, 208, 247

Anti Pattern, 79, 106

AODT, 346

AOP, 109, 117, 131, 186

AOSD, 117

API, 72, 110, 120

Applets, 31

Application, 26, 124

Application and Domain, 187

Application Engineering, 122, 187

Application Functionality, 187

Application Language, 125

Application Layer, 40

Application MIME Type, 266

Application Programmer, 51

Application Programming Interface, 72, 110,

120

Application Server, 27, 39

Application Specific Integrated Circuit, 67

Application Types, 39

Arabian Numbering, 213

Archetype, 153, 185, 343

Archetype Definition Language, 153, 185

Archetype Model, 155, 185

Architectural Pattern, 79, 81, 214

Architecture Description Languages, 22

Architecture Design Diagrams, 13

Architecture Diagrams, 19

Architecture Views, 22

Arithmetic Logic Unit, 50

Arithmetic Operation, 266

Array, 76

Array as Container, 239

Array with Meta Information, 328

Artificial Intelligence, 60, 138, 145, 205, 221

Artificial Neural Network, 208, 247

ASD, 16

ASIC, 67

Aspect, 109, 117

Aspect Marker Interface, 117

Aspect Oriented Programming, 109, 117, 131,

186

Aspect Oriented Software Development, 117

Aspect Weaver, 117

Assembler, 51, 253, 260, 261

Assembler Object, 86

Assembly Language, 47, 51, 57

Assignment, 52

Association Elimination, 222

Association of Lisp Users, 58

Associations, 202

Associations within Patterns, 214

Associative Container, 75

Astronomical Particles as Ontology, 233

Atom with Electrons, 207

Attribute, 68

Audio MIME Type, 266

Automated Medical Record, 335

Automated Theorem Proving, 60

Automatic Storage Management, 58

Automation Engineering, 248

Autonomous Systems, 25

14.11 Index 481

Awareness, 210

AWT, 109, 362

B Specification Language, 127

Back Flow of Waterfall Process, 14

Backend, 40

Backend Communication Model, 257

Backtracking, 137

Backus Naur Form, 278

Backward Chaining, 137

Base Architecture, 107

Base Class Access, 73

Base Level, 155, 185

Base Level in Reflection Pattern, 92

Basic Behaviour in Nature, 199

Basic Input/ Output System, 181

Basic Patterns for Communication, 259

Batch Language, 58

BDT, 346

Beaming, 388

Bean, 109

Behandlungs Datenträger, 346

Behaviour, 247

Behaviour Diagram, 127

Behavioural Design Pattern, 79

Being, 173

Belief of an Agent, 120

Benediktine Approach, 210

BerliOS Development Portal, 332

Bidirectional Dependencies in Data Mapper Pat-

tern, 84

Bidirectional Dependency, 100–102, 107, 110,

185

Bidirectional Dependency in Java Class Frame-

work, 93

Bidirectionalism Patterns, 214, 216

Big Bang Delivery, 14

Binary, 246

Binary Arithmetic, 246, 266

Binary Digit, 49, 266

Binary System of Arithmetic, 246

Bio-Cybernetics, 5

Biological Environment, 252

Biological System as Ontology, 230

Bionics, 5

BIOS, 181

Bit, 49, 246, 266

BitTorrent, 34

Black Box, 248, 249

Black Box Reuse, 109

Block, 52

Block Diagram, 248

BNF, 278

BO, 28

Body, 388

Bonobo, 32

Boolean Algebra, 246

Boolean Logic, 246

Boolean Operation, 266

bottom-up, 19

Brain, 250, 388

Brain Regions, 176

Branch, 53

Branch Tree Node, 77

Branching, 53

Broca Area for Language Production, 210

Broken Type System in Java, 93

Broker Pattern, 91

Broker Pattern in CYBOI, 316

Bundesvereinigung Deutscher Apotheker Verbände,

346

482 14 Appendices

Bundling of Attributes and Methods, 68, 362

Bureaucrat Pattern, 100

Business Logic, 40

Business Logic Layer, 82

Business Objects, 28

Byte, 266

Byte Code, 51

C, 57, 58, 68

C Programming Language, 362

C Programming Language Correction, 328

C Programming Language Simplification, 327

C++, 57, 68, 72, 125

C++ Programming Language, 362

C++ Standard Library, 93

c/s, 34

C#, 124

CAD, 232

cADL, 153

Call by Reference, 269

Call by Value, 269

Callback Event Handling, 101

Callback Mechanism, 107

CAM, 232

CAP, 349

Capabilities of an Agent, 250

Capability Based System, 319

Capability Maturity Model for Software, 19

Capability Maturity Model Integration, 19

Capability of an Agent, 120

Car Model as Ontology, 232

Card Operating Systems, 354

Cascade of Change, 73

CASE, 374

Case, 53

CASE Tool, 127, 131

Categorisation, 166, 204, 214, 234

Categorisation versus Composition, 229

Category, 202, 204, 234

CBD, 109

CCC, 190

CCR, 339

CD, 306

CDA, 263, 344, 346

CDISC, 354

Cell Division, 177

CEN, 341, 342

CEN/TC251, 342

Central Nervous System, 176

Central Processing Unit, 26, 181, 323

Central Processing Units, 39

Chain of Responsibility Pattern, 88, 100, 110

Change follows Rules, 243

Chaos, 243

Chaos Computer Club, 190

Child Category, 204

Child Item, 205

Choice, 53

Chunking, 180

CIAS, 345

CICS, 36

Circular Reference, 101, 102

Circular Reference in Java Class Framework, 93

CL, 68, 139

Class, 68, 112, 204

Class Diagram, 127

Class Hierarchy, 73, 115

Class Method, 105

Class Template, 124

Classification, 68, 152, 204

Classification of Concerns, 186

14.11 Index 483

Client, 25, 27, 30, 34

Clinical and Laboratory Standards Institute, 353

Clinical Data Interchange Standards Consor-

tium, 354

Clinical Document Architecture, 263, 344

Clinical Encounter of an Episode Based EHR,

337

Clinical Episode of an Episode Based EHR, 337

Clinical Image Access Service, 345

Clinical Item of an Episode Based EHR, 337

Clinical Observations Access Service, 345

Clinical Terms Version 3, 348

CLOS, 68, 93

Closed Loop Control System, 248

CLSI, 353

CLU, 93

Clustering, 39

CMET, 344

CMMI, 19

CMR, 335

CNS, 176

COAS, 345

COBOL, 36

Code of a Concept, 146

Code Only Approach, 133

Code Reduction, 184

Code View, 22

Code Visualisation Approach, 133

Coding Scheme, 152

Cognition, 210

Collaboration Diagram, 127

Collection, 75, 76

Collection as Container, 239

Collection Framework, 107

Collective Code Ownership in XP, 17

College of American Pathologists, 349

Colour, 207

COM, 32

COM+, 35

Combinatorial Explosion, 151

Comite Europeen de Normalisation, 341

Command Pattern, 97

Commercial At , 62

Common Business Oriented Language, 36

Common Characteristics, 204

Common Concern, 117, 186

Common Knowledge Abstraction, 376

Common Lisp, 68, 139

Common Lisp Object System, 68, 93

Common Message Element Type, 344

Common Object Request Broker Architecture,

35, 109, 131, 345

Common Warehouse Metamodel, 131

Communication, 25, 253

Communication Diagram, 127

Communication Languages, 25

Communication Model, 263

Communication Model by Shannon & Weaver,

256

Communication Models, 256

Communication Partners, 25

Communication Patterns, 257

Communication Patterns placed in Layered Ar-

chitecture, 261

Comparison Operation, 266

Compiler, 51

Complement Operation, 246

Complex Number, 213

Complexity, 2

Complexity Crisis, 2

484 14 Appendices

Complexity Hiding, 248

Complicated Processing, 218

Component, 43, 109–111, 113

Component Based Design, 109

Component Diagram, 127

Component Isolation, 110

Component Lifecycle, 110, 111, 196

Component Object Model, 32

Component Oriented Programming, 109, 113,

117, 120, 196

Component Selector, 113

Composite Pattern, 87, 88, 99, 100, 220

Composite Structure Diagram, 127

Composition, 166, 205, 214, 220, 221, 230,

234, 275, 359, 362

Compositional Conceptual Scheme, 151

Compositional Scheme, 151, 347

Compound, 202, 205, 234

Compound Model, 234

Compound Statement, 52

Compound Structure as Multi Dimensional Con-

tainer, 325

Computer, 1, 25

Computer Aided Design, 232

Computer Aided Manufacturing, 232

Computer Aided Software Engineering, 374

Computer Aided Software Engineering Tool, 127,

131

Computer Hardware, 252, 313

Computer Language, 43, 45

Computer Languages Timeline, 45

Computer Structure, 48

Computer Tomograph, 352

Computer-based Patient Record, 335

Computer-Computer Communication, 40

Computerised Medical Record, 335

Computerised Patient Record, 335

Concept, 146, 205, 233, 234, 267

Concept Mix, 218

Concept of a Horse, 237

Conceptual Gaps, 19

Conceptual Interaction, 207, 235

Conceptual Network, 143

Conceptual Ontology Representation, 19

Conceptual View, 22

Concern, 109, 113

Concern Interface, 117

Concern-less Development, 115

Concurrency Pattern, 79

Condition, 53

Conditional Branching, 53

Configurable System, 182

Constraint, 209, 235

Constraint Form of ADL, 153

Container, 75, 110, 111, 113, 205, 239

Container Inheritance, 77, 362

Container Unification, 239

Containers in CYBOL, 300

Content of a Document, 61

Contents of Communication, 256

Context Driven Testing, 16

Context of a Language, 274

Continuity of Care Record, 339

Contract, 107, 111, 113

Control Engineering, 248

Control Software, 192

Control Structure, 51

Controller, 248

Conversation Model by Osgood & Schramm,

256

14.11 Index 485

Conversion between Communication Models,

257

Conversion Method of AGOP, 189

Converter containing Rules, 249

COP, 109, 113, 117, 120, 196

Copy Constructor, 77

CORBA, 35, 109, 131, 345

CORBAmed, 345

COS, 354

Counted Pointer Pattern, 103, 104

Counting Loop, 55

CPR, 335

CPU, 26, 39, 181, 323

Creational Design Pattern, 79

Cross Referencing, 62

Crosscutting Concern, 117, 186

Crystal Family, 16

CT, 352

CTV3, 348

Customer Information Control System, 36

CWM, 131

Cybernetics, 5, 232, 381

Cybernetics Oriented Interpreter, 168, 313, 381

Cybernetics Oriented Language, 168, 273, 381

Cybernetics Oriented Programming, 5, 381

Cybernetics Oriented Programming Approach,

168

CYBOI, 168, 313, 360, 362, 374, 376, 377, 381

CYBOI Architecture, 313

CYBOI as Capability Based System, 319

CYBOI as Exokernel, 317

CYBOI as GUI Renderer, 316

CYBOI as Hardware Abstraction Layer, 317

CYBOI as Hybrid Kernel, 317

CYBOI as Knowledge-Hardware Interface, 313

CYBOI as Microkernel, 317

CYBOI as Monolithic Kernel, 317

CYBOI as Peer to Peer System, 316

CYBOI as Secure Architecture, 319

CYBOI as Universal Data Converter, 324

CYBOI as Virtual Machine, 313

CYBOI avoiding Access Control Lists, 319

CYBOI avoiding Inter Process Communication,

317

CYBOI Control Flow, 321

CYBOI Data Creation, 325

CYBOI Data Encapsulation, 325

CYBOI Development Environment, 329

CYBOI Distribution and Installation, 330

CYBOI Error Handling, 329

CYBOI Functionality, 321

CYBOI Implementation, 327

CYBOI Knowledge Container, 314

CYBOI Lifecycle Management, 322

CYBOI main Procedure, 322

CYBOI Model Transition, 324

CYBOI Operation Execution, 324

CYBOI Part Dependencies, 321

CYBOI Process Launching, 322

CYBOI Signal Checker, 314

CYBOI Signal Checking, 323

CYBOI Signal Handling, 323

CYBOI using External Libraries, 328

CYBOI using Patterns, 316

CYBOL, 168, 273, 313, 360, 362, 363, 374,

376, 377, 381

CYBOL ’abstraction’ Attribute, 281

CYBOL ’channel’ Attribute, 281

CYBOL ’constraint’ Tag, 282

CYBOL ’Hello, World

486 14 Appendices

’ Example, 297

CYBOL ’model’ Attribute, 281

CYBOL ’model’ Tag, 282

CYBOL ’name’ Attribute, 281

CYBOL ’part’ Tag, 282

CYBOL ’property’ Tag, 282

CYBOL Algorithm Division Example, 290

CYBOL Attributes, 281

CYBOL Communication Diagram, 306

CYBOL Comparison to other Languages, 301

CYBOL Conditional Execution Example, 292

CYBOL Constructs, 284

CYBOL Definition, 274

CYBOL DTD, 276

CYBOL EBNF, 278

CYBOL External Resources Example, 286

CYBOL for Any System, 299

CYBOL Knowledge Designer, 306

CYBOL Logic Example Constructs, 289

CYBOL Loop as Operation Example, 291

CYBOL Meta Constraints Example, 288

CYBOL Meta Property Example, 285

CYBOL Model Diagram, 306

CYBOL Model Viewer, 310

CYBOL Model-Part Relation Example, 285

CYBOL Operation Call Example, 289

CYBOL Organisation Diagram, 306

CYBOL Presentation and Content Example, 296

CYBOL Runtime Model Editor, 310

CYBOL Semantics, 281

CYBOL Serialised Model Example, 287

CYBOL Simple Assignment Example, 290

CYBOL Special Example Constructs, 293

CYBOL State Example Constructs, 284

CYBOL Synchronous Execution Example, 293

CYBOL Syntax, 275

CYBOL Tag-Attribute Swapping, 283

CYBOL Tags, 282

CYBOL Template Diagram, 306

CYBOL Template Editor, 305

CYBOL Tool Support, 305

CYBOL Vocabulary, 276

CYBOL XSD, 278

CYBOL-OWL Comparison, 303

CYBOL-RDF Comparison, 302

CYBOP, 5, 362, 374, 381

CYBOP ’abstraction’ Attribute, 276

CYBOP ’channel’ Attribute, 276

CYBOP ’constraint’ Tag, 276

CYBOP ’model’ Attribute, 276

CYBOP ’model’ Tag, 276

CYBOP ’name’ Attribute, 276

CYBOP ’part’ Tag, 276

CYBOP ’property’ Tag, 276

CYBOP Approach, 168

CYBOP Distinction of Statics and Dynamics,

370

CYBOP Evaluation, 374

CYBOP Fiction, 387

CYBOP Future Topics, 383

CYBOP Knowledge Schema, 377

CYBOP Knowledge Triumvirate, 374

CYBOP Limits, 378

CYBOP Long-Life Software System, 377

CYBOP Separation of State- and Logic Knowl-

edge, 373

CYBOP Usage of a Double-Hierarchy Knowl-

edge Schema, 372

CYBOP Validation, 369

CYBOP-Java Analogies, 313

14.11 Index 487

Cyclic Method Dependencies, 73

dADL, 153

Daemon, 32, 89, 192

DAG, 99, 102, 148, 220

DAML, 140

DAML+OIL, 140, 143

DARPA Agent Markup Language, 140, 143

Data (Definition), 135

Data and Rules, 167

Data Bush, 190

Data Control Language, 61

Data Definition Form of ADL, 153

Data Definition Language, 28, 61

Data Garden, 190

Data Hiding, 70

Data Manipulation Language, 45, 61

Data Mapper, 257

Data Mapper Layer, 84

Data Mapper Pattern, 84, 187, 259, 261, 267

Data Mapper Pattern in CYBOI, 316

Data Mapping, 40

Data Mining, 39, 218

Data Path, 50

Data Source Layer, 43, 82, 84, 259

Data Structure, 249

Data Transfer, 64

Data Transfer Object, 257, 261

Data Transfer Object Pattern, 86, 187, 260,

267

Data Transfer Object Pattern in CYBOI, 316

Data Value, 52

Data Warehouse, 39

Database, 28, 187, 261

Database Data Structure, 102

Database Layer, 40, 84

Database Management System, 28, 187, 259

Database Server, 28

Database Storage, 64

Date and Rule, 135, 137

Datenträger, 346

DB, 28, 187, 261

DBMS, 28, 187, 259

DCD, 141

DCE, 34

DCL, 61

DCOM, 35

DCOP, 32

DDE, 32

DDL, 28, 61

DE, 122, 131, 187

Debian GNU/Linux Package Definition, 288

Decision of an Agent, 120

Decision Support, 218

Declaration, 52

Declarative Programming, 60

Declarative Programming Language, 47

Decoder, 256

Decoupling, 202

Decoupling of Components, 112

Delegation Pattern, 98

Delphi, 70, 109

Dependency Injection, 110

Deployment Diagram, 127

Deployment View, 22

Depth, 207

Derivation, 210

Design, 14, 19, 376

Design Pattern, 79, 97, 214

Design Phase, 122, 133

Design Reflections, 214

488 14 Appendices

Design Technique, 79

Design Time Structure, 239

Design View, 22

Desktop Communication Protocol, 32

Desktop Publishing, 63

Desoxy Ribo Nucleic Acid, 177, 388

Deterministic Behaviour, 247

Deutsches Institut für Medizinische Dokumen-

tation und Information, 346

Deutsches Institut fuer Medizinische Dokumen-

tation und Information, 354

Deutsches Institut fuer Normung, 341

Development Aspect, 117

Development Concern, 186

Development for Reuse, 122

Development in XP, 17

Development View, 22

Device Independent Format, 63, 66

Dialectic Dualism, 246

Dialectical Relationship between Whole and Part,

235

DICOM, 352

DICOM Message Service Element, 352

Dictionary, 77, 151

Differential Behaviour, 248

Difficult Standardisation of Software Models,

219

Digital Imaging and Communications in Medicine,

352

Digital Logic, 49

Digital Logic Circuit, 266

Digital Medical Record, 335

Digital Technology, 246

DIMDI, 346, 354

Dimensions, 387

DIMSE, 352

DIN, 341

Direct Communication, 253

Directed Acyclic Graph, 102, 148

Directed Acyclical Graph, 99, 220

Directories, 39

Discrimination, 166, 202, 214, 234, 275

Distributed Application, 91

Distributed Component Object Model, 35

Distributed Computing Environment, 34

Distributed System, 34

DML, 45, 61

DMR, 335

DNA, 177, 388

DNS, 37

do-while, repeat-until, 55

DOC++, 62

DocBook, 61

DocBook DTD, 285, 335

Document Content Description, 141

Document Publishing, 64

Document Type Definition, 276

Document View MVC Variant, 87

Domain, 124

Domain Communication Model, 257

Domain Engineering, 122, 187

Domain Knowledge, 187

Domain Layer, 43

Domain Logic Layer, 82

Domain Model, 221, 259–261, 263

Domain Model Layer, 84

Domain Model Pattern, 83

Domain Modelling, 64

Domain Name Service, 37

Domain Patterns, 40

14.11 Index 489

Domain Specific Language, 125, 131

Domain-Application- versus System-Knowledge

Separation, 187

Double Hierarchy, 235

Double Word, 266

Doxygen, 62

DSDM, 16

DSL, 125, 131

DT, 346

DTD, 276

DTO, 86, 187, 257, 260, 261, 267

DTO in CYBOI, 316

DTP, 63

Dual Model Approach, 155, 185, 343

Dual Representation, 202

Dualism, 173

Duplicate Element, 76

Duplicate Key, 77

Duration of Part Processes, 209

DVI, 63, 66

Dynamic Behaviour, 267

Dynamic Data Exchange, 32

Dynamic Model, 127

Dynamic Parts of a Framework, 107

Dynamic Processing, 173

Dynamic Processing of Knowledge, 360

Dynamic System Development Method, 16

Dynamic Typing, 58, 124

Dynamics, Terms and Synonyms, 43

EBES, 345

EBES Expert Group 9, 345

EBNF, 276, 278

EC Logic, 137

EDI, 346

EDIF, 67

EDIFACT, 345

eDonkey, 34

EEG9, 345

EEPROM, 181

Egocentric Form of Language, 210

eHC, 354

EHR, 7, 113, 153, 222, 233, 331, 335, 342,

359, 363

EHR Communications Task Force, 342

EHRcom Task Force, 342

Eiffel, 124

EIR, 233

EJB, 28, 187

Electric Voltage, 49

Electrically Erasable Programmable ROM, 181

Electronic Circuit, 49, 67

Electronic Data Interchange for Administration,

Commerce and Transport, 345

Electronic Data Interchange Format, 67

electronic Health Cards, 354

Electronic Health Record, 7, 113, 153, 222,

233, 331, 335, 342, 363

Electronic Health Record as Core Model, 339

Electronic Insurance Record, 233

Electronic Medical Infrastructure, 335

Electronic Medical Record, 335

Electronic Patient Record, 335

Element, 205

Elementary Particle, 49

Eliminated Sub Associations, 222

EMI, 335

empty, 362

EMR, 335

Encapsulated PostScript, 286

Encapsulation, 70, 225, 269

490 14 Appendices

Encoder, 256

Endless Loop, 102

Endless Loop through Pattern, 216

Enterprise Java Bean, 187

Enterprise Java Beans, 28

Enterprise Resource Planning System, 249

Entity Relationship Diagram, 127

Entity Relationship Model, 84, 217, 259, 261

Entity-Relationship Model, 28

Entrance and Exit of a Control Structure, 51

Entropy, 243

Enumeration, 76

Enumerative Coding Scheme, 150

Enumerative Scheme, 150, 347

Enumerative-compositional Scheme, 151

ENV 12265, 342

ENV 13606, 342

Envelope Letter Pattern, 103

Episode Based EHR, 222, 337

EPR, 335

EPS, 286

ERD, 127

ERM, 28, 84, 217, 259, 261

ERP, 249

Error (of Syntax, Logical, at Runtime), 329

Ethernet, 37

European Board of EDI Standardisation, 345

European Committee for Standardization, 342

Event, 194

Event Handler Pattern, 100

Event Queue, 194

Evidence Based EHR, 338

Evolutionary Process, 14

Example, 7

Execution, 26

Execution View, 22

Existential Conjunctive Logic, 137

Expert System, 60, 137

Explicit Knowledge, 135

Expression, 52

Extended Backus Naur Form, 276, 278

Extended Meta Language, 127

Extended ML, 127

Extensible Markup Language, 61, 64, 131, 140–

142, 274–276, 278, 281

Extensible Markup Language Processing, 39

Extension of Ontologies, 231

External Knowledge, 182

External Server, 89

Extreme Programming, 13, 16, 17, 19

Extrinsic Property, 210

Factory Method Pattern, 103

Falsifying Polymorphism, 77

FastTrack, 34

Fat Client, 30

FDD, 16

FDDI, 37

FDL, 331

Feature Driven Design, 129

Feature Driven Development, 16

Feature Model, 19, 122, 127, 129, 131

Feature Modelling, 19, 129

Feature Oriented Domain Analysis, 122, 129

Feature RSEB, 122

FeatuRSEB, 122

Feedback Control System, 248

Feedback Loop, 14

Fiber Distributed Data Interface, 37

Field Programmable Gate Array, 67

File, 266

14.11 Index 491

File System Structure, 102

File Transfer Protocol, 37

Firewall, 39

First Order Predicate Logic, 153

First Principles of Demonstration, 244

Flash ROM, 181

Flat Data Structure, 86

Flex Machine, 319

Flexibility, 2, 73

FLOSS, 331

Flux, 243

FODA, 122, 129

FOPL, 153

for, for-next, 55

Force, 208

formal, 19

Formal Knowledge Representation Language of

AGOP, 189

Formal Programming Language, 273

Formality, 273

Fortran, 57

Forward Chaining, 137

FOSS, 17, 331

Foundation Level of an Ontology, 145

Four Views Model, 22

Fourth Generation Languages, 374

FPGA, 67

FQN, 113

FR, 37

Fraction Number, 213

Fragile Base Class (Problem), 73

Fragile Base Class Problem, 216, 229

Frame Relay, 37

Framework, 43, 107, 110

Framework Example, 225

Free and Open Source Software, 17, 331

Free Documentation License, 331

Free Software Foundation, 332

Free/ Libre Open Source Software, 331

Freenet, 34

Freshmeat Development Portal, 332

Frontend, 40, 261

Frontend Communication Model, 257

Frozen Spot, 107

FSF, 332

FTP, 37

Fully Qualified Name, 113

Function Template, 124

Functional Elements, 248

Functional Language, 58

Functional Model, 127

Functional Programming, 47, 58, 374

Fundamental Pattern, 79

Fuzzy Logic, 247

GALEN, 151, 350

GALEN Common Reference Model, 350

GALEN CRM, 350

GALEN Representation and Integration Lan-

guage, 350

Gang of Four, 79

Garbage Collector, 104

Gate, 49

GDT, 346

GEHR, 153, 343

Gene, 388

Genealogy, 205

General Practitioners, 346

General Public License, 331

General Purpose Information Component, 342

General Purpose Language, 58, 125

492 14 Appendices

Generalisation, 204

Generalised Architecture for Languages, Ency-

clopedias and Nomenclatures in Med.,

151, 350

Generative Programming, 131

Generator, 131

Generic Programming, 124, 131

Generics, 124

Geraete Datenträger, 346

German College of Community Physicians, 346

Gimp Toolkit, 362

Global Access, 111

Global Access Patterns, 214, 216

Global Data Access, 105, 106

Global Medical Device Nomenclature, 353

Global Variable, 68

Glue Language, 58

GMDN, 353

GNU/Linux, 362

Gnutella, 34

GoF, 79

Good European/ EHR, 153

Good European/ Electronic Health Record, 343

Goto (Jump) Command, 53

GP, 131, 346

GPIC, 342

GPL, 58, 125, 331

GRAIL, 350

Grammar, 210

Grammar of a Language, 275

Granularity, 229, 230

Granularity of Items, 222

Graphical Frame consisting of Components, 207

Graphical User Interface, 33, 87, 109, 196, 261,

263, 285, 359, 362

Graphology of a Language, 274

GraphViz DOT, 125

Grouping Patterns, 214, 216

GTK, 362

GUI, 33, 87, 109, 196, 261, 263, 285, 359, 362

GUI Design, 64

GUI Layouts, 285

Hard Disk Drive, 181, 196, 255, 266

Hardware, 1, 173, 192

Hardware Architecture, 48

Hardware Description Language, 67

has-a Relation, 237

Hash Map, 77

Hash Map as Container, 239

Hash Table, 77

Hash Table as Container, 239

Hashtable, 77

Haskell, 58

HCI, 33

HDD, 181, 196, 255, 266

HDL, 67

HDTF, 345

Health Issue of an Episode Based EHR, 337

Health Level Seven, 37, 225, 344

Health Professional Cards, 354

Healthcare Domain Taskforce, 345

Healthcare Xchange Protocol, 263, 347

Hidden Patterns in CYBOL, 301

Hierarchical Algorithm, 224

Hierarchical DBMS, 28

Hierarchical Knowledge, 166

Hierarchical Model Approach, 220

Hierarchical Model View Controller, 267

Hierarchical Model View Controller Pattern, 88,

100, 221

14.11 Index 493

Hierarchical Modularisation of Control Struc-

tures, 51

Hierarchical MVC, 359

Hierarchical Procedure, 205

Hierarchical State, 205

Hierarchy, 148, 166, 205

Hierarchy as Principle, 222

High Performance Technical Computing, 39

High Voltage, 49

Higher Level Languages, 51

Higher Levels of a Computer Structure, 48

HIS, 331, 344, 346

HL7, 37, 225, 344, 346

HL7 CDA, 342

HMVC, 88, 100, 221, 267, 359

Hook Method Pattern, 104

Horizontal Market Framework, 107

Horizontal Scaling, 39

Horizontal System, 39

Hospital Information System, 331, 344, 346

Host, 36

Hot Spot, 107

HPC, 354

HPTC, 39

HTML, 61, 64, 363

HTTP, 31, 37, 286

Human Being, 252

Human Body, 251

Human Body having Organs, 207

Human Senses, 251

Human Thinking, 166, 199, 214

Human User, 33

Human-Computer Communication, 40

Human-Computer Interaction, 33

Human-Human Communication, 40

HXP, 263, 347

Hybrid Machine Language Level, 51

Hyper Text Markup Language, 363

Hyper Text Transfer Protocol, 286

Hypertext Markup Language, 61, 64

Hypertext Transfer Protocol, 31, 37

i/o, 39

IC, 50, 181

ICD, 150, 348

ICD-03, 349

ICD-10, 348, 349

ICD-9-CM, 349

ICF, 352

ICHPPC, 352

ICN, 349

ICNP, 151, 349

ICPC, 352

ICR, 335

Identifier, 52

Idiom, 103

Idiomatic Pattern, 79, 103, 214

IDL, 109, 131, 345

IIOP, 345

Image MIME Type, 266

Imperative (Command Oriented) Programming

Language, 47

Imperative Language, 58

Implementation, 14, 19, 360, 376

Implementation Inheritance, 73

Implementation Phase, 122, 133

Implementation Source Code, 13

Implementation View, 22

Implicit Knowledge, 135

In-Language DSL, 125

Inanimate World, 243

494 14 Appendices

Incremental Process, 14

Independent Loops Scenario for Data Forward-

ing, 91

Indirect Communication, 255

Inference, 244

Inflexible Architecture, 217

informal, 19

Informal Language, 273

Informatics, 1

Information, 1

Information (Definition), 135

Information Age, 1

Information Flow, 249

Information Hiding, 70

Information Processing, 253

Information Processing Model, 180, 324

Information Reception, 251

Information Science, 1

Information Sending, 251

Information Society, 381

Information Technology, 1

Information Technology Environment, 25, 40,

257

Inheritance, 72, 107, 204

Inheritance as CYBOL Property, 299

Initial Value, 52

Initialisation, 52

Inner Class, 68

Inner Language, 210

Inner Structure of Software Systems, 40

Input Method Framework, 107

Input of a System, 247

Input/ Output, 39

Input/ Output Memory, 194

Inside of a Software System, 43

Instance, 68

Instance Diagram, 127

Instance Tree, 106

Instantiating Knowledge, 196

Instantiation, 68

Instruction Set Architecture, 50, 51

Integer Number, 213

Integral Behaviour, 248

Integrated Care Record, 335

Integrated Circuit, 50, 181

Integrated Development Environment, 58

Integration, 14

Intentionality, 19

Inter System Communication, 194

Inter-Dependency, 102

Inter-Disciplinary Effort, 4

Inter-Process Communication, 32

Inter-Type Declaration, 117

Interacting Systems, 257

Interaction, 207

Interaction and Cooperation, 25

Interaction Diagram, 127

Interaction Overview Diagram, 127

Interconnect, 39

Interdisciplinary Science, 232

Interface, 68, 72, 112

Interface Definition Language, 109, 131, 345

Interface Pattern, 112

Internal Memory, 194

Internal Meta Class in JVM, 93

Internal Server, 89

Internalised Natural Language, 210

International Classification for Nursing Prac-

tice, 349

International Classification of Diseases, 150, 348

14.11 Index 495

International Classification of Functioning, Dis-

ability and Health, 352

International Classification of Health Problems

in Primary Care, 352

International Classification of Nursing Proce-

dures, 151

International Classification of Primary Care, 352

International Council of Nurses, 349

International Organization for Standardization,

37, 341

Internet, 31

Internet Inter ORB Protocol, 345

Internet Packet Exchange, 37

Internet Protocol, 31, 37

Interpreter, 51

Intersection Operation, 246

Intra System Communication, 194

Intrinsic Property, 210

Introduction, 1

Inversion of Control Pattern, 106, 110, 120

IoC, 106, 110, 120

IP, 31, 37

IPC, 32

IPX, 37

is-a Relation, 237

Is-a Relationship, 204

is-of Relation, 237

ISA, 50, 51

ISO, 341

ISO 9735, 345

ISO OSI Model Layers, 82

ISO OSI Reference Model, 37

IT, 25

IT Environment, 40, 257

Item, 202, 213, 234

Itemisation, 362

Itemisation Patterns, 214, 216

Iteration in XP, 17

Iterative Process, 13, 14

Iterative Structure, 17

Iterator, 76

Java, 57, 68, 70, 72, 92, 109, 112, 124, 359,

360

Java Class Framework, 93

Java Container Framework, 75

Java Database Connectivity, 28

Java Development Kit, 76, 107, 112

Java Foundation Classes, 87

Java Message Service, 32

Java Native Interface, 93

Java Programming Language, 362

Java Server Pages Application, 39

Java Swing Framework, 285

Java Virtual Machine, 93, 360

Java-CYBOP Analogies, 313

JavaDoc, 62

JDBC, 28

JDK, 76, 107, 112

JEDEC, 67

JFC, 87

JMS, 32

JNI, 93

Job, 26

Job Control Language, 58

Join Point, 117

Join Point Model, 117

Join Point Representation, 117

Joint Electron Device Engineering Council, 67

JPM, 117

JSP, 39

496 14 Appendices

JVM, 93, 360

Kassenärztliche Bundesvereinigung, 346

Kassenaerztliche Vereinigung Datenträger, 346

KBV, 346

KDT, 346

KE, 135, 265

Kernel Concepts in CYBOI, 317

Key-Value Pair, 388

Key-Value-Pair, 77, 182

KIF, 138

Knowledge, 173, 182, 192, 244, 247, 360, 381

Knowledge (Definition), 135

Knowledge Abstraction, 265

Knowledge and System Control, 166

Knowledge Base of an Agent, 120

Knowledge Carrier, 255

Knowledge Engineering, 135, 221, 265

Knowledge Engineering, Basic Principles, 137

Knowledge Interchange Format, 138

Knowledge Level, 155

Knowledge Level in Reflection Pattern, 92

Knowledge Management System, 192

Knowledge Manipulation, 265

Knowledge Memory, 194

Knowledge Memory consisting of Compound-

and Primitive Models, 325

Knowledge Model, 196, 221, 249, 267, 324,

377

Knowledge Modelling Language, 273

Knowledge Ontology, 230

Knowledge Query and Manipulation Language,

139

Knowledge Representation, 135, 230

Knowledge Representation Principles, 137

Knowledge Schema, 5, 199, 239, 265, 381, 388

Knowledge Schema with Meta Information, 234

Knowledge Specification, 225

Knowledge Template, 196, 267, 324, 377

Knowledge Tree, 190, 267, 269, 374

Knowledge Triumvirate, 374

Knowledge-Hardware Connection, 192

Kommunikations Datenträger, 346

KParts, 35

KQML, 139

KV Nordrhein, 346

KVDT, 346

Kybernetes, 5

Labor Datenträger, 346

Lambda Calculus, 265

Lamport TeX, 61, 63

Language, 210

Language (Channel) as Communication Element,

256

Language Analysis, 274

Language History, 45

Language List, 45

Language Paradigm, 120

Large Database, 39

Lasswell Formula, 256

Last-In-First-Out, 76

LaTeX, 61, 63

LaTeXe, 61, 63

Layer Supertype Pattern, 82, 115

Layered Architecture, 261

Layers, 27, 43

Layers of a System, 222

Layers of an Abstract Model, 232

Layers Pattern, 82, 88

LDR, 335

LDT, 346

14.11 Index 497

Leaf Tree Node, 77

Learn and Communicate, 17

Legacy Host, 36

Legacy System, 109

Legacy Systems, 36

Levels of an Abstract Model, 232

Lexical Scheme, 152, 347

Lexical Tech, 152

Lexico-Grammar of a Language, 274

Lexicon, 148, 210

Lexicon (Terminology) Query Service, 345

Library, 51, 107

libstdc++, 93

Lifecycle, 111

Lifecycle Method, 105, 115, 117

Lifecycle Methods, 111

Lifecycle of a System, 196

Lifecycle of Software, 13

Lifetime Data Repository, 335

Lifetime Phase of a Component, 111

LIFO, 76

Lightweight Process, 26

Linear Behaviour, 248

Linguistics, 274

LISP, 57

Lisp, 58, 68, 125

List, 76

List as Container, 239

Literate Programming, 62

Little Language, 125

Local Process, 32

Local Variable, 52

Localised Structures, 199, 243

Locking, 28

Logic, 243, 244

Logic Functions (AND, OR), 49

Logic Knowledge, 243, 262, 267

Logic Knowledge Modelling, 281

Logic Manipulating State, 267

Logic Model, 249, 265

Logic, Terms and Synonyms, 43

Logical Architecture, 40, 43, 257

Logical Book as Ontology, 231

Logical Observation Identifiers, Names and Codes,

151, 349

Logical Programming, 47, 60

Logical View, 22

Logiciel Nautilus, 350

LOINC, 151, 349

Long Term Memory, 194

Long-Term Memory, 178

Lookup Method identifying Components, 113

Loop Control Structure, 55

Looping, 55, 363

Loosely-coupled external Interconnect, 39

Low Voltage, 49

Lower Level Instructions, 51

Lower Levels of a Computer Structure, 48

LQS, 345

LTM, 178, 194

Machine Language, 47, 51, 273

Macro, 125

Macrocosm, 205

Macrocosm as Part of an Ontology, 233

Main Entry Procedure, 196

Mainframe, 36

Maintenance Agency Policy Group, 353

Manager Class, 107

Manager Object Pattern, 105

Map, 75, 77

498 14 Appendices

Map as Container, 239

MAPG, 353

Mapper, 253

Mapping Containers to CYBOL, 300

Mapping Rules, 263

Markup Language, 45, 61

Markup Tag, 276

MAS, 120

Mass, 207, 208

Mass as Dimension, 387

Materiality of Language, 210

Mathematica, 125

Mathematical Markup Language, 296

MathML, 296

MD, 306

MDA, 131, 133, 189, 345

Media Streaming, 39

Mediator Pattern, 84

Medical Informatics Standards, 341

Medical Informatics Standards in Res Medici-

nae, 356

Medical Informatics Working Groups, 341

Medical Information System, 7

Medical Messaging and Communication Stan-

dards, 344

Medical Record Modelling Standards, 342

Medical Subject Headings, 351

Medical Terminology Systems, 347

Medium of Communication, 263

Mediums for Knowledge Storage, 255

Memory, 49, 194

Memory Management in C++, 104

Mental State of an Agent, 120, 189, 250

Mercury, 60

Merger of traditional and new Concepts, 5

MeSH, 351

Message, 194

Message (What) as Communication Element,

256

Meta Class, 93

Meta Information, 92, 207, 234

Meta Information Hierarchy, 274

Meta Level, 155, 185

Meta Level Architecture, 92

Meta Level in Reflection Pattern, 92

Meta Meta Level in Reflection Pattern, 92

Meta Model, 234

Meta Model Pattern, 79

Meta Object Facility, 131

Meta Object Protocol, 92, 117

Meta Programming, 267

Metamorphosis of Models, 217

Metaphysics, 144, 173

Method, 5, 68

Method Maturity, 19

Method Overloading, 74

Method Overriding, 74

MFC, 87

Micro Architecture, 50

Micro Architecture Hardware, 50

Micro Architecture Level, 51

Micro Program, 50

Micro Program Level, 51

Micro Program Software, 50

Microcosm, 205

Microcosm as Part of an Ontology, 233

Microkernel Pattern, 89

Microkernel Pattern in CYBOI, 316

Microplanner, 137

Microsoft Foundation Classes, 87

14.11 Index 499

Middleware, 28, 187

MIME, 266

Mind, 250, 388

Mind and Body, 173

Mind and Brain, 166

Misleading Tiers, 4, 40

Misuse of Inheritance, 229

Mixed Push-Pull-Pipeline Scenario for Data For-

warding, 91

Mixin Programming Concept, 117

Mobility of an Agent, 120

Model, 234, 374

Model as Part of Communication, 262

Model Centric Approach, 133, 189

Model Driven Architecture, 131, 133, 189, 345

Model Metamorphosis, 217

Model Only Approach, 133

Model Only Technology, 189

Model Translator, 263

Model View Controller, 257, 267

Model View Controller Pattern, 87, 88, 101,

187, 221, 261

Model View Controller Pattern in CYBOI, 316

Model-Code Synchronisation, 133

Modelling Example, 237

Modelling Mistakes, 4, 158

Modifier Invariant Function, 73

Module, 51

Module View, 22

Modus Ponens, Inference Rule, 137

Modus Tollens, Inference Rule, 137

MOF, 131

Monades Theory, 205

Monkey and Banana Problem, 60

MOP, 92, 117

Motion, 243

Motivation, 4

Motoric Organs, 251

Movement, 207

Multi Agent System, 120

Multi-directional Inter-Dependencies, 40

Multiple Condition, 53

Multiple Inheritance, 72

Multipurpose Internet Mail Extension, 266

Muscle Cell, 251

MusicXML, 293

MVC, 87, 88, 101, 187, 221, 257, 261, 267,

359

MVC in CYBOI, 316

MVC Triad, 88, 267

n Tier, 27

Named Values, 219

Napster, 34

National Committee for Clinical Laboratory Stan-

dards, 353

National Council for Prescription Drug Programs,

353

National Electrical Manufacturers Association,

352

National Health Service Information Authority,

348

National Library of Medicine, 351

Native Method, 93

NCCLS, 353

NCPDP, 353

NEMA, 352

Nerve Cell, 251

Nesting, 199, 243

Net of Associations, 202

NetBIOS, 37

500 14 Appendices

NetDDE, 35

Network Basic Input/ Output System, 37

Network DBMS, 28

Network Dynamic Data Exchange, 35

Neumann Model of a Computing Machine, 314

nextElement Method, 76

Nexus of Appearances, 243

NHSIA, 348

NLM, 351

Nodes, 32

Noise, 49

Nomenclature, 148

NOT Operation, 246

Notation, 263

Null Key, 77

Null Value, 77

Number, 213

Number Base System, 213

Numbering System, 213

Numeric Languages, 51

Object, 68, 202

Object Constraint Language, 127

Object Diagram, 127

Object Finder Interface, 84

Object Linking and Embedding, 32

Object Management Group, 131, 345

Object Mapper Implementation, 84

Object Model, 127

Object Orientation, 68

Object Oriented Analysis, 122

Object Oriented Design, 122

Object Oriented Model, 217

Object Oriented Programming, 43, 47, 68, 78,

79, 117, 120, 186, 204, 214, 222,

225, 229, 237, 239, 359, 374

Object Oriented Programming Systems, 374

Object Process Diagram, 127

Object Query Language, 28

Object Request Broker, 345

Object Technology Workbench, 189

Object Tree, 102

Object-Oriented DBMS, 28

Object-Oriented Model, 28

Object-Relational DBMS, 28

Objectification Patterns, 216

Observer Pattern, 87, 101, 107, 110

Occurence of Sub Processes, 209

OCL, 127

OD, 306

ODBC, 28

ODM, 354

Odyssee, 350

Office of Population Censuses and Surveys Clas-

sification of Surgical Operations and

Procedures, 348

Offline Thinking, 202, 204

OIL, 140

OLE, 32

OMG, 131, 345

Omnipresence of Hierarchy, 221

Online Thinking, 202

Ontological Layer, 230

Ontological Level, 222, 230

Ontology, 37, 43, 115, 120, 143, 144, 152, 173,

216, 222, 230, 265, 363

Ontology Inference Layer, 140, 143

Ontology of Principles, 145

Ontos and Logos, 144

OO, 68

OOA, 122

14.11 Index 501

OOD, 122

OODBMS, 28

OOM, 28, 217

OOP, 43, 47, 68, 78, 79, 117, 120, 186, 204,

214, 222, 225, 229, 237, 239, 359,

362, 374, 377

OOP Innovations, 78

OOPS, 374

OPCS, 348

OPCS-4, 348, 349

OPD, 127

Open Database Connectivity, 28

Open EHR, 153

Open Electronic Health Record, 343

Open Implementation Pattern, 92

Open Loop Control System, 248

Open Source Development Portals and Services,

332

Open Source Health Care Alliance, 334

Open Source Software, 16, 109, 331, 347

Open Systems Interconnection, 37

OpenEHR, 155

openEHR, 343

OpenEHR Archetype, 342

OpenGALEN, 350

Operand, 52

Operating System, 26, 27, 37, 39, 51, 89, 173,

182, 192, 194, 313, 362

Operating System Concepts in CYBOI, 317

Operation, 52, 248, 266

Operational Data Modeling, 354

Operational Level, 155

Operational Level in Reflection Pattern, 92

Operator, 52

OQL, 28

OR Operation, 246

ORB, 345

ORDBMS, 28

Order of Sub Processes, 209

Ordered Collection, 76

Oriented Acyclic Graph, 102

Orthogonally Persistent Operating System, 319

Orthography of a Language, 274

OS, 26, 27, 37, 39, 51, 89, 173, 182, 192, 194,

313, 362

OS Concepts in CYBOI, 317

OSHCA, 334

OSI, 37

OSS, 16, 109, 331, 347

OTW, 189

Output of a System, 247

Overlapping Code through Concerns, 115

OWL, 140–143, 303

Oxford Medical Information System, 352

OXMIS, 352

P2P, 34

PAC, 88

PAC Agent, 88

Package Diagram, 127

Page Description Language, 45, 66

Paradigm and Language, 45

Paradigm Overview, 47

Parallel Layer, 230

Parameter Forwarding, 111

Parent Category, 204

Parent Class, 72

Parent Item, 205

Part, 205, 207, 235

Partial Contact of an Episode Based EHR, 337

Particle, 202, 205

502 14 Appendices

Pascal, 57, 58

Passive Component, 120

Passive Domain Data (Material), 187

Patient Carried Record, 335

Patient Centered Medical Record, 337

Patient Medical Record, 335

Pattern, 79, 107

Pattern Language, 79

Pattern System, 79

Pattern Systematics, 214

Pattern-less Application Development in CY-

BOI, 316

Patterns, 43

Patterns in CYBOL, 301

PCL, 66

PCR, 335

PDA, 181

PDF, 63, 66

PDFTeX, 63

PDL, 66

Peer Node, 34

Peer-to-Peer, 34

Performance, 2

Performance of a System, 196

Peripheral Nervous System, 176

Perl, 58

Persistence Layer, 257

Persistence Model Layer, 84

Persistent Communication, 255

Persistent Data, 28, 181

Persistent Memory, 194

Persistent Storage, 178

Person (Patient) Identification Service, 345

Personal Digital Assistant, 181

Personal Health Project, 339

Personal Health Record, 335

Philosophy, 173

Philosophy and Mathematics, 244

Phonology of a Language, 274

PHP, 339

PHR, 335

Phrase as Combination of Terms, 210

Physical Architecture, 25, 257

Physical Book as Ontology, 231

Physical Dimension, 207

Physical Tiers, 43

Physical View, 22

Picture Element, 184

PIDS, 345

PIM, 131, 189

Pipes, 32

Pipes and Filters Pattern, 91

Pipes and Filters Pattern in CYBOI, 316

Pixel, 184

PL/1, 57, 109

PL/I, 36

Platform Independent Model, 131, 189

Platform Specific Model, 131, 189

PLD, 67

Plug & Play Environment, 89

PMR, 335

PMS, 331, 344, 346

PNS, 176

Point-to-Point Protocol, 37

Pointcut, 117

POL, 48

Polymorphism, 74, 107

Polymorphism Patterns, 214, 216

POMR, 337

Portable Document Format, 63, 66

14.11 Index 503

Position, 207

Position as Point, 210

Post Test Loop, 55

PostScript, 66, 138

PPP, 37

Practice Management System, 331, 344, 346

Pragmatics of a Language, 274

Pre Test Loop, 55

Pre-Conditions in JVM, 93

Presentation Abstraction Control, 88

Presentation Client, 30

Presentation Clients, 27

Presentation Layer, 40, 43, 82, 88, 261

Primitive, 266

Primitive Type, 75

Primordial Class Loader in JVM, 93

Principle of Universality, 199

Printer Control Language, 66

Prioritising, 194

Priority of a Signal, 194

private, 70

Probabilistic Behaviour, 247

Problem of First Principles, 244

Problem Oriented Languages, 48

Problem Oriented Medical Record, 337

Procedural Language, 374

Procedure, 51

Process, 26, 209

Process Group, 26

Process Tree, 102

Process View, 22

Processing of Knowledge, 194

Production Aspect, 117

Production Concern, 186

Program Counter, 26

Program Flow Chart, 51

Program Keywords, Symbols, Abbreviations, 51

Programmable Logic Device, 67

Programmable System, 182

Programming Language, 45, 363

Programming Language Generations, 45

Programming Language One, 36

Programming Paradigm, 45

Programming Paradigm Systematics, 47

Programming Paradigms, 43

Programming Paradigms as Contrasting Pairs,

47

Prolog, 58, 60, 137

Property, 235

Proportional Behaviour, 248

protected, 70

Prototype Software Project, 7

Proxy Server, 39

PS, 66, 138

PSM, 131, 189

Psychology, 178

public, 70

published, 70

Publisher-Subscriber Pattern, 101

Pull Scenario for Data Forwarding, 91

Push Scenario for Data Forwarding, 91

Python, 58, 68

QMS, 346

Qt, 362

Qualitätsring Medizinische Software, 346

Quality, 213

Quantity, 213

Quantum Computer, 49

Quark, 49

Qubit, 49

504 14 Appendices

Querying, 28

RADS, 345

RAM, 76, 106, 181, 196, 255, 266, 267

Random Access Memory, 76, 106, 181, 196,

255, 266, 267

Randomness, 199, 243

RAS, 39

Rational Unified Process, 14, 22

RDBMS, 28, 61

RDF, 140–143, 302

RDF Schema, 142

Re-ordering of Code, 62

READ, 348, 349

Read Codes, 348, 349

Read Only Memory, 181

Real Time Pattern, 79

Reasoning, 244

Receiver (Whom) as Communication Element,

256

Recommendation for Pattern Usage, 216

Record, 68

Recursion, 51, 99, 100

Recursion Patterns, 214, 216

Redundant Code, 115

Redundant Meta Information in Java Class Frame-

work, 93

Reentrant Structure, 14

Reference Information Model, 225, 344

Reference Model, 155, 185

Refined Message Information Model, 344

Reflection Pattern, 92, 155

Reflective Mechanisms and their Negative Ef-

fects, 93

Reflective Technique, 185

Regenstrief Institute, 349

Register, 49

Registers, 26

Registry Object Pattern, 105

Regress of Reasons, 244

Relation, 207

Relation (is-a, has-a, is-of), 237

Relational Database, 137

Relational Database Management System, 61

Relational DBMS, 28

Relaxed Layered System, 82

Release Planning, 17

Reliability, Availability, Serviceability, 39

Remote Communication Model, 257

Remote Method Invocation, 30

Remote Procedure Call, 30, 37, 347, 352

Remote Server, 35

Repetition, 199, 243

Requirements, 14

Requirements Analysis Document, 13

Requirements Document, 19

Res Medicinae, 7, 168, 381

Res Medicinae Application Prototype, 331

Res Medicinae Contributors, 334

Res Medicinae Core Model, 339

Res Medicinae Development Tools, 333

Res Medicinae Knowledge Separation, 360

Res Medicinae Project, 331

Res Medicinae Requirements Analysis, 335

Res Medicinae Requirements Document, 335

Res Medicinae Steps of Realisation, 357

Res Medicinae Student Works, 357

Res Medicinae Topological Documentation, 359

Res Medicinae with Nested Views, 359

Resource Access Decision Service, 345

Resource Description Framework, 140–143, 302

14.11 Index 505

Resource Grouping, 26

Responder Pattern, 100

Result (Effect) as Communication Element, 256

Reusability, 73

Reuse, 2

Reuse driven Software Engineering Business,

122

Reuse through Parameterisation, 124

Rexx, 58

Rich Client, 30

RIM, 225, 344

RKI, 346

RM, 155, 185

RMI, 30

RMIM, 344

Robert Koch Institut, 346

Robot, 1

Role of a Component, 113

ROM, 181

Roman Numbering, 213

Root Tree Node, 77

Roundtrip Engineering, 189

Roundtrip Engineering Approach, 133

RPC, 30, 37, 347, 352

RSEB, 122

RTTI, 92

Ruby, 125

Rules, 243

Rules of Translation, 263

Run Time Type Identification, 92

Running of a System, 196

Runtime Structure, 239

RUP, 14, 22

Savannah Development Portal, 332

Scalability, 39

SCDI, 353

Scenarios, 22

Schema, 205, 374

Schema for Object Oriented XML, 141

Schema with Meta Information, 234

Scheme, 58

Schemes of Terminology, 149

Sciences as Ontology, 232

Scientific Inventions, 1

SCIPHOX, 346

Scribe, 61

Script Oriented Programming, 58

Scripting Language, 47, 58

Scrum, 16

SDL, 127

SDM, 354

SDO, 342

Secure Socket Layer, 39

Security by Design, 110

Security in CYBOI, 319

Self Awareness, 202, 250

Self-calling Assumptions of a Class Method, 73

Semantic Gaps, 19

Semantic Link, 146, 148

Semantic Web, 140, 141, 144

Semantics, 210

Semantics of a Language, 274, 281

Semi Structured Model Approach, 219

semi-formal, 19

Semi-Formal Diagrams, 273

Sender (Who) as Communication Element, 256

Sensoric Organs, 251

Sensoric Type of Terms, 202

Sensory Memory, 178, 194

Sentence as Combination of Terms, 210

506 14 Appendices

SEP, 13, 19, 122, 129, 133, 189, 335, 376, 381

Separation of Concerns, 113

Separation of Contract and Implementation, 113

Separation of Interface and Implementation, 112

SEQUEL, 61

Sequence, 75, 76

Sequence Diagram, 127

Sequence of (Mapping) Rules, 265

Sequence Package Exchange, 37

Sequenced Step, 51

Serial Line Internet Protocol, 37

Serialising Knowledge, 196

Server, 25, 27, 34

Server Process, 27

Service Manager for Components, 113

Service Oriented Architecture, 352

Servlets, 31

Session, 26

Set, 76

Set as Container, 239

SGML, 61, 64, 276

Shape, 207

Short Term Memory, 194

Short-Term Memory, 178

Shutdown of a System, 196

Shutdown Phase of a Component, 111

Side Effect, 58, 269, 374

Signal, 49, 194

Signal Loop, 194

Signal Memory, 194

Signal Pattern, 97

Signal Processing, 253

Signal to Noise Ratio, 49

Simple Mail Transfer Protocol, 37

Simple Object Access Protocol, 35, 352

Simplified Layered Architecture, 262

Single Inheritance, 72

Single Model Approach, 217, 225

Singleton Pattern, 103, 105, 107, 117

Six Pack Model, 122

Size as Difference, 210

SLIP, 37

Small Servers, 32

Smalltalk, 68, 92, 93, 125

SML, 58

SMP, 39

SMTP, 37

SNOMED, 151, 349

SNOMED Clinical Terms, 349

SNOMED CT, 153, 349

SNOMED International, 349

SNOMED Reference Terminology, 349

SNOMED RT, 349

SNR, 49

SOA, 352

SOAP, 35, 352

SoC, 113

Social Form of Language, 210

Socket Communication Mechanisms, 362

Software, 1, 173

Software Architecture, 22

Software as Passive Knowledge and Active Con-

trol, 166

Software Component, 109

Software Crisis, 2, 381

Software Design, 2

Software Engineering, 5, 19

Software Engineering Process, 13, 19, 122, 129,

133, 189, 335, 376, 381

Software Framework, 107

14.11 Index 507

Software Lifecycle, 13

Software Pattern, 79, 214

Software Pattern Classification, 79

Software Product Line, 129

Solar System consisting of Planets, 208

Solid State Physics, 49

SOP, 58

Source Code, 19

Source Code Documentation, 62

Sourceforge Development Portal, 332

SOX, 141

Space, 207

Space as Dimension, 387

Spatial Dimension, 210

Special Purpose Language, 58

Specialisation, 204

Specification and Description Language, 127

Specification Language, 45, 127

Speech Act Theory, 120

Spin State, 49

Spiral Process, 14

SPL, 58

SPP, 47, 51, 68, 78, 237, 239, 374, 377

Spread Functionality, 115

Spread Functionality through Concerns, 115

SPX, 37

SQL, 28, 61, 137, 187

SSL, 39

Stack, 26, 76

Stack as Container, 239

Staged Process, 14

Stand Up Meeting, 17

Standalone Systems, 27

Standard Generalized Markup Language, 61,

64, 276

Standard Template Library, 75, 124

Standardisation of Communication between In-

formation Systems in Physician’s Of-

fices and Hospitals using XML, 346

Standards Committee on Dental Informatics,

353

Standards Development Criticism, 355

Standards Development Organisation, 342

Startup of a System, 196

Startup Phase of a Component, 111

State and Logic, 5, 243, 374

State Chart Diagram, 127

State Knowledge, 243, 262, 267

State Knowledge Modelling, 281

State Machine Diagram, 127

State Model, 249, 265

State Primitive, 266

State, Terms and Synonyms, 43

State- and Logic, 381

State- and Logic Knowledge, 167

Statement, 52

States 0 and 1, 49

States High and Low, 49

States On and Off, 49

Static Constraints of a Framework, 107

Static Knowledge, 173, 360

Static Models, 243

Static Rule, 267

Static Typing, 57

Statically Accessible Classes, 106

Statics and Dynamics, 5, 173, 381

Statics, Terms and Synonyms, 43

Steady State, 249

Steady Upgrading, 219

STL, 75, 124

508 14 Appendices

STM, 178, 194

Stochastic Behaviour, 247

Strategy Pattern, 87

Stratum, 230

Streams, 35

Strong Coupling, 110

Strong Coupling between Layers, 100

Strong Typing, 57

Struct, 68

Structural Design Pattern, 79

Structure by Hierarchy, 221

Structure Chart, 51

Structure Diagram, 127

Structure of a Document, 61

Structure of this Book, 8

Structure, Terms and Synonyms, 43

Structured and Procedural Programming, 68,

78

Structured Data Type, 68

Structured DNA, 388

Structured English Query Language, 61

Structured Query Language, 28, 61, 137, 187

Structured- and Procedural Programming, 47,

51, 237, 239, 374

Studienzentrum Göttingen (Allgemeinmedizin),

346

Style of a Document, 61

Sub Category, 204

Sub Class, 74

Sub Model, 222

Sub Platform, 93

Sub Process, 209

Subclass, 73

Subject, 202

Submission Data Modeling, 354

Subroutine, 51

super, 74

Super Category, 204

Super Class, 74

Super Model, 222

Super Platform, 93

Superclass, 73

Superior Class, 72

SW-CMM, 19

Swing, 362

Switch, 53

Syllogism, 244

Symbols of a Language, 276

Symmetric Multiprocessing, 39

Synapses, 350

Synchronisation Problems, 218

Synergy on the Extranet, 350

SynEx, 350

Syntactic Sugar, 93

Syntax, 210

Syntax of a Language, 275, 276

Syntax Tree, 102

System, 26, 247

System and Knowledge, 182

System as Part of Communication, 262

System Constellations, 25

System Family, 129

System Family Engineering, 19, 122, 187

System Integration Language, 58

System Lifecycle, 196

System of Sciences, 232

System Programmer, 51

System Programming, 47, 57

System Programming Language, 57

System- and Application Functionality, 185

14.11 Index 509

Systematics, 204

Systematics of Nature, 204

Systematized Nomenclature of Medicine, 151,

349

SystemC, 67

Systems Engineering, 5

Systems Interconnection, 37

Table, 77

Table with constrained Number of Parts, 209

tADL, 153

Tagged Values, 219

Task, 26

Task Bag, 26

Task Farm, 26

Taxonomic Classification, 150

TC251, 342

Tcl, 58

TCP, 31, 37, 352

TCP/IP, 37

TD, 306

Technical Committee 251, 342

Technical Environment, 252

Technical Systems, 25

TEI, 61

Telephone Network, 37

Teleportation, 388

Telnet, 37

Temperature with Minimum and Maximum, 209

Template, 374

Template Form of ADL, 153

Template Method Pattern, 103, 104

Ten15, 319

Term, 146, 202

Term as Abstraction, 210

Termination Character-less Arrays, 328

Terminology, 144, 148, 152

Terms of a Language, 274, 276

Terms of First Order, 202

Terms of Second Order, 202, 204

Test, 14

TeX, 61

Tex, 63

TeX User Group, 63

Text Encoding Initiative, 61

Text MIME Type, 266

Textual User Interface, 33, 263

Textual User Interfaces, 362

The Cathedral and the Bazar, 17

The Linux Documentation Project, 285, 335

Thesaurus, 152

Thin Client, 30

Thinking, 210

Third Party Maintenance, 36

Thread of Execution, 26

Tier, 27

Tightly-coupled internal Interconnect, 39

Time, 209

Time as Dimension, 387

Time Index, 202

Timing Diagram, 127

TLDP, 285, 335

Token Character, 62

Token Ring, 37

Tools & Materials Approach, 124, 187

Top Level Container, 225

Top Level Model, 233

top-down, 19

Top-most Super Category, 222

Topological Documentation in Res Medicinae,

359

510 14 Appendices

TP4, 37

TPM, 36

Traceability, 19, 129

Traditional and New Ideas, 5

Transaction Handling, 28

Transaction Pattern, 97

Transactional Database, 39

Transfer Control Protocol, 31, 37, 352

Transfer Model, 263

Transient Communication, 253

Transient Data, 28, 181

Transient Memory, 194

Transient Storage, 178

Transistor, 49

Translation, 51

Translator, 253

Translator Architecture, 84, 86, 87, 257

Translator as Part of Communication, 262

Translator Model, 260

Translator Pattern, 187, 363

Transport Protocol Class 4, 37

Tree, 75, 77, 99, 102, 205, 221

Tree as Container, 239

Tree Node, 77

Tree Structure, 374

Trigger, Implication, 137

Triple-Choice CYBOL Template Editor, 305

TUG, 63

TUI, 33, 263, 362

Turing Machine, 265

Two Level Modelling, 155

Two Level Separation, 145

Two’s Complement, 266

Type, 52, 204

Typeless Programming, 47, 58

Typeset Code and Documentation, 62

Typing, 57

TyRuBa, 60

UDP, 37

UI, 40, 187, 363

UI Framework, 40

UI Model, 261

UMDNS, 352

UML, 14, 19, 43, 68, 92, 122, 127, 131, 217,

248, 306

UML Diagram Type, 127

UML Tool, 68, 127, 189

UMLS, 152, 351

UMLS Knowledge Source Server, 351

UMLS Metathesaurus, 351

UMLS Semantic Network, 351

UMLS Specialist Lexicon, 351

UMLSKS, 351

UN Standard, 345

Unconditional Branching, 53

Unidirectional Dependency, 110, 222, 267

Unidirectional Relation, 205, 216, 232

Unidirectional Structure, 106

Unification of Communication Paradigms, 40

Unified Medical Language System, 152, 351

Unified Modeling Language, 14, 19, 43, 68, 92,

127, 131, 248, 306

Unified Modelling Language, 122, 217

Uniform Resource Indicator, 143

Uniform Resource Indicator reference, 302

Union Operation, 246

United Nations Standard, 345

Universal Communication, 40

Universal Interactive Executive, 37, 58, 125

14.11 Index 511

Universal Medical Device Nomenclature Sys-

tem, 352

Universal Memory Structure, 239

Universal Network Objects, 35

Universality, 243

Universe, 233

Universe as Conglomerate, 201

UNIX, 37, 58, 125

UNIX Shell Script, 125

UNO, 35

Unpredictable Behaviour through Pattern, 216

URI, 143

URIref, 302

Use Case +1 View, 22

Use Case Diagram, 127

User Datagram Protocol, 37

User Interface, 40, 187, 363

User Interface Model, 261

User Stories, 17

V-Model, 14, 19

V-Modell 97, 14

Variable, 52

VB, 58, 109

VB.NET, 124

VCL, 109

VDAP, 346

VDM-SL, 127

Vector, 76

Vector as Container, 239

Vegetative Nerve System, 250

Verband der Hersteller von IT Lösungen für das

Gesundheitswesen, 346

Verband Deutscher Arztpraxis Softwarehersteller,

346

Verilog HDL, 67

Vertical Market Framework, 107

Vertical Scaling, 39

Vertical System, 39

Very High Level Language, 125

Very High Speed Integrated Circuit, 67

VHDL, 67

VHitG, 346

VHR, 335

VHSIC, 67

Video MIME Type, 266

Vienna Development Method - Specification

Language, 127

View, Implication, 137

Virtual Health Record, 335

Virtual Machine, 48

Virtual Patient Record, 335

Virtual Private Network, 39

Virtual Record (EHR), 338

Virtual Storage Access Method, 36

Virtual- and Real World, 173

Visual Basic, 58, 109

Visual Component Library, 109

Visual Impressions of the Human Mind, 207

VM, 48

Vocabulary, 148, 210

Vocabulary of a Language, 274

Volatile Data, 181

Volatile Memory, 194

VPN, 39

VPR, 335

VSAM, 36

W3C, 64

Waiting Loop, 194

Waterfall Process, 13, 14

Web Browser, 31

512 14 Appendices

Web Client, 31

Web Client and Server, 31

Web Ontology Language, 141, 143, 303

Web Server, 31, 39

Web User Interface, 263, 363

Web User Interfaces, 362

Weight, 208

Well-Defined Knowledge Paths, 269

Wernicke Area for Language Recognition, 210

while, while-do, 55

Whirlpool Process, 14

WHO, 348

Whole, 205

Whole Part Hierarchy, 274

Whole-Part Pattern, 99

Whole-Part Relationship, 235

Wild Jump, Goto, 51

Without Capsules, 269

Word, 266

Word as Abstraction, 210

Work Queue, 26

Workflow, 267

Workflow Composition, 64

World Health Organisation, 348

World Wide Web, 61, 64

World Wide Web Consortium, 64

Wrapper Classes in Java, 93

Wrapper Pattern, 87, 98

WUI, 263, 362, 363

WWW, 61, 64

wxWindows, 362

x Data Carrier, 346

x Datenträger, 263

x Datenträger, 346

X-Library, 362

X.226, 37

X.25, 37

xDT, 263, 346

XFree86, 362

Xlib, 362

XMI, 131, 141

XML, 39, 61, 64, 131, 140–142, 274–276, 278,

281, 344, 346, 347, 360, 362

XML Attribute, 275, 281

XML Data, 141

XML Metadata Interchange, 131, 141

XML Schema, 141, 142, 278

XML Schema Definition, 276, 278

XML Tag, 275, 281

XP, 16, 17, 19

XSD, 276, 278

YACC, 125

Yet Another Compiler Compiler, 125

Yo-Yo, 19

Z Specification Language, 127

Zentralinstitut für die Kassenärztliche Versorgung,

346

ZI, 346

