
Configuring Embedded System Families
Using Feature Models

Detlef Streitferdt, Periklis Sochos, Christian Heller, Ilka Philippow

Softwaresystems / Processinformatics
Technical University of Ilmenau

Helmholzplatz 1
98693 Ilmenau

{detlef.streitferdt | periklis.sochos | christian.heller | ilka.philippow}@tu-ilmenau.de

Abstract: A well planned reuse is a precondition to fulfil short release times and
high quality demands for an embedded system development. System families have
become an accepted method addressing these problems. In this paper we present a
five  step  process  extension  of  the  Family-Oriented  Requirements  Engineering
method out of [1] and [2] towards the development of embedded systems. We inte-
grated of models originating from the hardware, the hardware abstraction, and the
application level. With a digital video example used in several student projects we
show the applicability of the method extension. Developers will benefit of this ex-
tension by clearly defined methodical steps leading to a formalized feature model
of an embedded system and customers can choose their desired variant as feature
set, that can be automatically validated.

1 Introduction

The demand for short release times with a high product quality has lead to prefabricated
components used within embedded system families to ensure a planned reuse. This has to
be considered in all phases of the system family development. Especially the configura-
tion of the final system with its hard- and software modules is a vital part of the develop-
ment. Requirements originating from the underlying hardware, design decisions and tech-
nological constraints imply changes to the configuration of the family. The challenge of
keeping the configuration information in a consistent state while developing the system
family is only supported with an extended and formalized version of feature models.

In this paper we present an extension of the Family-Oriented Requirements Engineering
(FORE) development method towards embedded systems. First, we emphasize on the im-
portance of feature models for the task of configuring an embedded system family. The
key issue of our extension of the conventional FORE method towards embedded systems
is its methodical support of the hardware, the hardware abstraction and application level
of embedded systems. Development assets for these three abstraction levels will be con-
secutively integrated  into  a  formalized  feature  model  of  the  embedded  system. Con-
straints and relations between features originating from each of the three levels can easily
be added to the feature model. To show and explain our new extension, we use a digital
video system as an example.

There are two expected benefits of the FORE extension presented in this paper. First, de-



velopers will be guided through the requirements engineering phase of embedded system
family development and step by step a formalized feature model will be elaborated. Sec-
ondly, customers can now choose features out of the formalized feature model, to select
an own variant. Features are easy to understand for customers and in addition, for a fea-
ture selection it can be checked whether it is valid and can be built.

This paper is about an extension to FORE. Thus, besides a brief overview of feature
modeling and system family development, in the following state-of-the-art section we
give an introduction to FORE.

2 State-of-the-Art

A way to describe and model variabilities of system families by means of features was
initially described in FODA (Feature-Oriented Domain Analysis) [3] and further devel-
oped in [4], [5] and [6]. Features describe the system family for a future user, so that he
can choose an own application based on the features of the family. Features should de-
scribe an important,  distinguishable,  user visible aspect,  quality or  characteristic of a
software system or system. Based on own experience and analyses made by [4] and [6],
features are very well suited for users or customers, to understand the system quickly and
thus make a sound choice of their desired system based on the features offered.

Digital
Video System

CaseData Format

MPEG-4

Photo-CD

MPEG-2

DivX

Direct
Operation

Parental
Control

Slideshow

MP3

Video-CD

Play

Video

requires

excludes

Feature B is optionalA B

Feature B is mandatoryA B

Figure 1: Feature Model of a Digital Video System Family

Throughout this paper we will use a prototypically developed embedded system, a digital
video system family. On top of a Linux system we used vdr  [7] as extensible, plug-in
based software platform. A small subset of the features of the digital video system family
are shown in  Figure 1. Features are hierarchically organized starting with the concept
node at the root of the tree. All leaves with only mandatory markers up to the root of the
tree belong to the core of the system family. In  Figure 1 these features are “MPEG-2”
and “Video”. The other features form the variabilities of the family. In this example one
could choose to buy the “MP3” feature to play audio files. With the “requires” and “ex-
cludes” constraints we can further limit the possible choices of a set of features in the



tree. For a given feature we can state, that another feature is required or must be ex-
cluded, as this is modeled for the “Parental Control” feature, which simply locks the re-
mote control and thus would be useless with the possibility of a direct control panel at
the hardware system.

Out of all features a customer can choose a subset which will suffice his needs. In case
the feature selection is valid it forms a new member of the system family, but the validity
of a feature model can only be checked with a formalized model. In the next section such
a formalized model will be shortly introduced.

2.1Extended Feature Models

Feature models had to be extended to reflect different kinds of relations between fea-
tures. Such relations arise from technological hard- and software constraints. In the best
case these constraints can be elicited in the requirements engineering phase and have to
be propagated to the feature model. Other constraints are elaborated within the design
phase or may originate from implementation specific details.

In  [8] and  [2] feature models are extended by constraints that can be processed in an
automated way. Over 20 new and pre-defined constraints are available for a feature de-
veloper to be used with the corresponding data model. As shown in Figure 2, constraints
can be defined between several features using the FORE Feature Constraint Language
(FCL) [8]. As an example, mathematical constraints “m1” and “m2” are shown. We proc-
ess digital TV signals with the video system, referred to the “DVBCard” feature.

DVBCard [No.]

Timeshift PIP

m1 m2

Figure 2: Extended Feature Models

As mandatory parameter feature the number of DVB cards is required. By the time the
“Timeshift” feature is chosen, the constraint “m1” has to be true. The “Timeshift” feature
allows the user to interrupt current TV shows at any time. For the time of the interruption
the systems stores the TV show on the hard disc. As soon as the user wants to continue
watching the TV show, the stored data is presented. Because of hardware constrains we
need at least two DVB cards to accomplish this task. With the first DVB card we receive
the TV signal and store the data, with the second DVB card we decode and display the
previously stored data stream. Thus, “m2” in  Figure 2 also requires at least two DVB
cards, referred by the parameter feature attached to “DVBCard”. The same constraint
was defined for the “Picture In Picture” (PIP) feature. Here, the user can watch two TV
channels at the same time while one channel is displayed as small picture inside the sec-
ond channel, that is shown in full size. Again, at least two DVB cards are needed to
watch two different channels at the same time.

Constraints are defined in a language similar to the Object Constraint Language (OCL)
[9]. Thus, the feature model can be checked in an automated way for consistency and



each feature set can be validated against the constraint rules. As a result, we can proceed
in the development process with valid feature selections, that are variants of the family.

In  [10] and  [11] a Product Configuration Modeling Language (PCML) and the corre-
sponding tools are described. With PCML configurable products can be modeled and
single variants of this product can be derived. In contrast to PCML we use an extended
feature model to hold the constraints limiting the number of variants in the family. Thus,
we don't need a translation of features to PCML. The inference engine described in [11],
supporting the users configuration task is not yet part of our approach, but will be consid-
ered in further research efforts.

An Eclipse [12] plug-in for feature modeling can be found at [13]. With this plug-in fea-
tures can be modeled hierarchically together with constraints, that can be freely defined
as Prolog statements. This feature modeling tool is a good choice for the inclusion in a
tool chain, to establish and develop an embedded system family.

2.2Features Within Family-Oriented Development Methods

All system family development methods model the commonalities and variabilities of the
family in question. Family-Oriented Abstraction, Specification, and Translation (FAST)
[14] developed by Lucent Technologies uses scenarios with variability points, to distin-
guish between common and variable parts. In addition, a decision model guides through
the creation process of an application out of the family. The goal of FAST is to develop
an own language for each domain, with which family members will be “coded”. Together
with a tool chain for the language a FAST family would be complete.  Variabilities are
captured in textual documents and decision models. For customers without a sound tech-
nical background it is hard to understand the variabilities of the family. Here, the benefits
of feature models are missing.

The component-based application development (KobrA)  [15] offers three processes to
develop a system family. Within the Context Realization a business model of the family
will be developed. The second phase, the Framework Engineering, leads to a reference
architecture of the family to be used for all family members. In the third phase, KobrA
components will be developed,  so they can be used within the previously developed
framework.  KobrA uses a decision model to capture commonalities and variabilities of
the family, just like FAST. Decisions will be resolved using typed parameters. Relations
between decisions are part of the model but cannot be automatically processed. Again,
non-technical customers will have a steep learning curve to understand the family with its
benefits and the developers of the family need to put extra effort into handling and main-
taining the important decision model.

System family development methods, like FOPLE [5] or FeatuRSEB [15], use features to
model the commonalities and variabilities of the family. They are perfect to communicate
with customers. As stated in the last section, feature models are the most intuitive way to
model commonalities and variabilities. For the complete integration of feature models in
a development method they need to be processed in an automated way. Current methods
won't offer  an automated processing of their feature models.  Thus,  we integrated the
positive sides of the system family development methods with the power of extended fea-



ture models into a new method.

2.3Developing System Families with FORE

The Family-Oriented Requirements Engineering (FORE) Method [8], [2] is composed of
three main building blocks. The requirements engineering phase for the system family,
the data model holding all development assets and the requirements engineering phase
for an application derived out of the family.

Within the requirement engineering phase for the system family we start with a tailoring
step where the document model is set up (tailored), to reflect the company specific struc-
ture of specification, user and developer documents. Gathering domain knowledge is of
course not only ordering and reading books. The complete development team and its
management need to perform an in depth study of the domain in question. Enough time
has to be planned for this task to avoid very expensive misunderstandings later on. Leg-
acy systems and possible future systems are then analyzed to elicit the requirements and
features per system. We end up with a requirements and feature list for each system.
Within the synchronization step all requirements and features are re-organized into a re-
quirements and feature  model,  while keeping their  relation to the originating system,
which becomes a variant in the FORE data model. The scoping step is important for the
strategic planing of the future development steps. Out of the complete feature model a
subset has to be chosen to form the first version of the family. Nevertheless all features
will be considered for the derivation of the first architecture version. Thus, a roadmap for
the future development of the family can be created, without risking an architectural drift.
After a review the commonality / variability analysis improves the feature model with ad-
ditional relations between features, that may even originate out of the next technology se-
lection step. We will discuss this in the next section. Based on the feature model and the
chosen technology a first version of the family architecture can now be derived.

The six building blocks of the data model, as shown in Figure 3, start with the require-
ments model. Requirements are kept as simple textual sections, organized hierarchically
with freely defineable relations between requirements. These relations are also formu-
lated using FCL and thus, they can be automatically processed. The stakeholder model is
a “Who is Who” for the current family development. Requirements and later on features
will be related to the stakeholders who initially formulated them, to keep the original
sources of information in the data model. As already stated above, the document model is
a structural description of the documents to be created during the development of the
family. Relations of data model elements to the corresponding parts in a documentation
are modeled. This structure together with a style description is then used to automatically
generate the developer and user documentation, as well as the specification document.
Although generated documents outdate very fast, in fact they may be outdated by the
time they have been printed, they have to be printed for legal reasons and for better read-
ability, since some stakeholders don't like reading documents on a computer monitor. A
glossary is  kept  to  improve  the quality of  the documentation. Readers  can exchange
terms on the fly or they can even “ask” the system to explain terms they don't understand.
References are provided within a database accessible over a network, to keep the over-
head of referencing as small as possible while writing documents. Additionally, all data



elements should be traced to the relevant references, what improves the readability and
comprehension of the model. As in FAST and KobrA, FORE also includes the concept
of a decision model. FORE uses the decision model to guide a customer through the fea-
ture selection process. For each feature the possible decisions and assigned questions are
kept in the model, so the system is able to guide through the feature model with “ques-
tion-answer” pairs. For successfully validated and implemented feature sets a variant is
stored in the system. The key concept of the data model is the Extended Feature Model
(EFM) and is located between the requirements model and the UML design models.

Figure 3: FORE Development Process

All model elements can be related to each other. A set of requirements can relate to a fea-
ture out of the feature model and a feature can point to the relevant design elements. The
relation of any element to any other element, namely traceability, is realized as own ele-
ment in the FORE data model and is expressed in FCL. On the implementation side the
model is realized as XML-Schema [16] and the relations are based on the XML Linking
Language  [18]. Together with the formal description of relations expressed in FCL an
automated consistency checking and processing of the data model and the extended fea-
ture model is possible.

Requirements Engineering (System Family)

Gather Domain
Knowledge

C/V Analyse

[new]

[existent Systems] Analyse existent
Systems

[All
Systems
analysed]

[more Systems]

• Requirements
• Features

• Technological
Constraints

Synchronisation

Analyse Future
Systems

• Feature Model
• Variants

• Requirements Model
• Feature Model

Choose
Technology

Extended
Feature Model (EFM)

• Requirements
• Features

Activity

Data/Result

Process Flow

Data Flow

ConfigurationProblem Analysis
Align

Features

FORE
Tailoring

[Family Development]

[Application Development]

Scoping Review

[more Systems]

Derive
First Architecture

Store Additional
Data

Stakeholder Model

• Stakeholder Model
• Glossary
• References

Requirements- &
Feature Model for
this Family

FORE-Data Model

Requirements Engineering (Application)

[All Features
Present]

[New/Changed Features]

Document ModelRequirements Model

Glossary References

• New Features
• Changes

Variant

Derive
Application

• Installation Media
• Documentation

Decision Model

Variants



Finally, the requirements engineering phase for an application as member of the system
family uses the assets developed and stored in the data model. While inside the problem
analysis a customer will be questioned in a system family specific way. His requirements
need to be “fit into” existing family features. At this stage a very important task is to de-
scribe the system family using the wording of the customer, so he understands what the
family offers. It is important to note, that customer requirements can often be related to a
configuration of features. As we will see in the next section, features relate to compo-
nents, which are configurable plug-ins in our example. Thus, we can simply “adjust” the
components a  feature  relates  to,  to  satisfy the  customer needs.  Within the alignment
phase we check whether the customer raises requirements or features that are not present
in the family. Based on our complete feature model we had (before we did the scoping),
the strategic planing and financial issues, we decide whether the customer can be satis-
fied with an application out of our family or not. To configure an application all parame-
ter features need to be set to correct values. These values will be checked using the con-
straints attached to the modeled relations between the parameter features. Finally, within
the derivation step an application with the corresponding documentation will be created.

3 Extension of FORE towards Embedded Systems

As an example, we tested our method with an embedded digital video system. For this
system the hardware and operating system requirements are strongly influenced the sys-
tem family, particularly the feature model. To address these requirements specific to em-
bedded systems the FORE method had to be applied in three iterations. Finally, we de-
veloped an embedded process extension for FORE.

1. Develop a family model for the domain. In our example we developed a model
for the domain of digital video systems.

2. Develop a family model for the hardware components of the system family. We
developed a feature model for the hardware of the digital video system, which
consists of electronic as well as the mechanical parts.

3. Develop a family model  for the operating system components.  Since we use
Linux we had to check all the relevant Kernel options to derive an optimized ker-
nel for each member of our system family.

4. Interconnect these models to reflect all the relevant constraints between the fea-
tures and the assigned hard- and software components.

5. Integrate selection criteria for equivalent components in the feature model.

Within the 1st step we developed a feature model based on freely available information
about digital video systems and the software we used, SUSE Linux [18], vdr [19] and its
plug-ins  [20]. We elicited more than sixty top level requirements and developed more
than seventy features for a family model of general digital video systems.

For the 2nd step we checked the available hardware components, while keeping relevant
requirements and features in mind. In Figure 4 a subset of this feature model is shown. In
this example there are four complex relations that need to be checked whenever a feature
choice is made. Relations “m1” and “m2” will be processed as soon as the type, size or
weight of the system case is selected or changed. The size is given as length, height,



width triple and the size ranges for the Desktop and Barebone cases are attached to the
corresponding features. Should the user selectable size of the system contradict to the
size of the selected case type, where at least one case type has to be selected, then “m2”
will evaluate to false and the current feature selection would have do be adapted to sat-
isfy “m2”. In an analogous way, the weight is checked by processing relation “m1”. Both
relations, “m1” and “m2”, are internal relations since they connect features with each
other. In contrast, “m3” is an external relation connecting a feature with two components
of the design model. Some of the current hard drives offer internal registers with the ac-
tual temperature of the drive. In case the feature “Temp” is selected only hard drives with
temperature control can be added to a new family member. In our example there are only
two hard drives one with, the other one without temperature control. In case we could of-
fer several drives with temperature control “m3” would be processed in the “Derive Ap-
plication” step of FORE method. “m3” would then contain lists of hard drives sorted by
different criteria, for example the price. The user will then be asked to give his opinion
on the price of the hard disc. Bases on his decision the system can automatically choose a
hard disc, we will discuss this in the next section. The last relation of this example is
given by “m4”, which is external as well. Based on the desired amount of RAM a main
board has to be chosen. And again, in case more than one main board would fit the con-
straint of the relation, a choice based on given criteria will be offered.

HDD

[Size]

Feature B is mandatory.

Feature B is optional.

At least a and the most b features
have to be chosen out of the set B1 to Bn .BA

BA

A

B1

a..b
Bn...

A Structural Feature.

BA

x

Association „x“ between A and B.

Type Electronics

Liq. Coolng

Case

Air Cooling

Direct Control

[no. of fans]

[Weight]

[Size: l,h,w]

Desktop

BareboneModel 1

Model 2

Model 3

Model 4

Mainboard

m1

1

m2

Netcard

ISDN

DVB Card

MB 1

MB 2

[RAM]

[CPU]

Temp

HDD 1

HDD 2 m3

m4

Figure 4: Feature Model for Hardware Components

The 3rd step is needed to complete our embedded family. We analyzed the kernel con-
figuration possibilities and set up a kernel feature model. With this model the configura-
tion for a kernel compilation can be set. Thus, an optimized kernel can be built for each
application of the system family. The modular kernel concept of Linux allows us to build
very small kernels and a set of modules. With this, the kernel size changes over time and
occupies only the needed memory for the shortest possible time. Depicted in  Figure 5



and starting from the left to the right, the example subset of the kernel feature model has
the “Enhanced-BIOS” feature with which we ensure the proper operation of large hard
discs and the installation of BIOS “wake-up” timers, to start  the system even if it  is
turned off (but, of course it still has to be in “stand-by” mode!). The “Processor-type”
features enables the use of specific processor extensions of the instructions set. As mod-
eled, only one processor type can be selected. The power management of the CPU fre-
quency differs between the processor types. Thus, the frequency features are internally
related to the selected processor type. In general, none of the frequency power manage-
ment features would have to be selected, see the 0..1 cardinality for the feature “CPU
Freq.”. In case something should be selected, exactly one feature can be selected and this
feature  automatically  requires  the  correct  processor  type  for  the  system. Finally,  the
ACPI features can be selected to get enhanced control over the fan speed and thus, the
noise of the system. With the temperature sensor the system controls a shut-down in case
of overheated components. Finally, the operation mode of the “shut-down” button for the
system can be changed with the “Button” feature.

Proc. Type

586Features

Enh. BIOS

Kernel

AMD Ax

486

ACPI

Button

Thermal

Fan

Pow. Mngmnt

CPU Freq.

Athlon Speedstep

P4

1

Feature B is mandatory.

Feature B is optional.

At least a and the most b features
have to be chosen out of the set B1 to Bn .BA

BA

A

B1

a..b
Bn...

A Structural Feature.

BA

x

Association „x“ between A and B.

requires

requiresrequires

0..1

Figure 5: Kernel Feature Model

Within the 4th step the models developed above need to be interconnect to form a single
embedded feature model. With this model we will be able to correctly derive a complete
system. We are still in the requirements engineering phase and we are still modeling on a
very abstract level. The key benefit is exactly this level of abstraction. With the models,
we can reason about choices and requirements of the customer and we will get an answer
about whether or not the customer can be satisfied with a given feature set. For a better
view in Figure 6 some of the relations and elements are left out, although they still be-
long to the model. The gray lines visualize the origin of the sub feature models.

The left part of the figure holds a small subset of the feature model originating from the
1st step, the feature model for the digital video system domain. The TV feature is for the
bare watching capability of the system and the attached EPG feature offers an electronic



program guide. For the recording feature the overall recording time has to be set as pa-
rameter.  To schedule recording ahead of the actual TV show EPG+ is recommended.
The “recommend” relation just points out interesting facts for the customer. Here, it may
be useful for the customer to have EPG+ in case he plans to schedule recordings. He
could choose a TV show using the extended EPG+ version and schedule this show with
just a button.

Proc. Type

586

Features

Enh. BIOS

Kernel

AMD Ax

486

1

HDD

[Size]

Electronics

Case

Mainboard

MB 1

MB 2

Temp

HDD 1

HDD 2
m3

Digital
Video System

Recording

TV

Schedule

EPG

[Time]

EPG+

recommend

requires requires

requires

requires

m10

Feature B is mandatory.

Feature B is optional.

At least a and the most b features
have to be chosen out of the set B1 to Bn .BA

BA

A

B1

a..b
Bn...

A Structural Feature.

BA

x

Association „x“ between A and B.

Figure 6: Complete Feature Model

The middle part of the figure originates from the 2nd step of the development method and
the right part originates from the 3rd step. For this example four new “requires” relations
and one mathematical  relation had to be modeled.  In case a  customer would like to
schedule TV show recordings, an enhanced BIOS is needed to turn on the machine to
start recording. The enhanced BIOS is also needed for the second hard disc, due to its
size. Old BIOSes would not recognize such large hard discs. The last two “requires” rela-
tions start at the main board components. Of course main boards are built for a specific
processor type, what these two “requires” relations simply reflect.

Finally, there is the “m10” relation between the overall recording time and the size of the
hard disc and is a simple mathematical relation. The more recording time a customer re-
quests the more capacity a hard disc must have.

The 5th step is the elaboration of the criteria for the selection of equivalent components.
We are using Selector Components to accomplish this task. These components contain



the data relevant for the automated decision process. For the complete support of the
component based decision process we developed an own component model extension for
the FORE data model, described in [1].

Temp HDD 1

HDD 2

m3

Selector

Figure 7: Selector Component

For the digital video example we connected the selector components to the relevant rela-
tions, which is “m3” in Figure 7. In our prototypical implementation we use Ant scripts
[21] for the selector component. These scripts interactively question the customer within
the Application Derivation phase using the corresponding criteria.

4 Summary and Outlook

In this paper a requirements engineering development method for embedded systems was
presented. The method is based on FORE [7], [2] and was extended to be used with em-
bedded  systems. They key concept  of  FORE is  the  extended  and  formalized  feature
model, that is used to model the common and variable aspects of the family and at the
same time it can be automatically validated.

FORE
(Application View)

FORE
(Hardware Abstraction View)

FORE
(Hardware View)

Hardware Layer

Hardware
Abstraction Layer

Application Layer

Modeling Criteria

Appl.
Feature
Model

HAL
Feature
Model

Integration
(Overall View)

HW
Feature
Model

Appl.
Feature
Model

Appl.
Feature
Model

Appl.
Feature
Model

HAL
Feature
Model

HW
Feature
Model

Figure 8: FORE Extension for Embedded System Development

The extension of the method presented in this paper is divided into five steps. Within the
first three steps FORE will be used to elaborate and develop a feature model based on a
specific view point of the underlying system. In the last two steps the previously devel-
oped models will be integrated into a single family model of the embedded system and
the criteria for selecting equivalent components are then added. The method extension
shown in  Figure 8 was tested with a digital video system. Given the results of several
masters thesis in this area, the work is very promising and we plan to extend our method
towards a complete family development method by integrating design as well as imple-
mentation techniques.



References
1. Detlef  Streitferdt,  Christian  Heller,  Ilka  Philippow:  A component  model  for  applications

based  on  feature  models.  In  Proceedings  of  the  2nd  Groningen  Workshop  on  Software
Variability  Management:  Software  Product  Families  and  Populations,  University  of
Groningen, (2004).

2. Detlef Streitferdt: Feature-Oriented Requirements Engineering, Dissertation at TU-Ilmenau,
(2004).

3. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, A. Spencer Peterson:
Feature-Oriented Design  Analysis  (FODA) Feasibility  Study.  Report:  CMU/SEI-90-TR-21
ESD-90-TR-222, www.sei.cmu.edu, (1990).

4. Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim,Euiseob Shin, Moonhang Huh: FORM:
A  Feature-Oriented  Reuse  Method.  Pohang  University  of  Science  and  Technology,
www.postech.ac.kr/e/, (1998).

5. Kyo  C.  Kang,  Kwanwoo  Lee,  Jaejoon  Lee:  Feature-Oriented  Product  Line  Software
Engineering:  Principles  and  Guidelines.  Pohang  University  of  Science  and  Technology,
www.postech.ac.kr/e/, (2002).

6. Krzysztof  Czarnecki,  Ulrich  Eisenecker:  Generative  Programming:  Methods,  Tools,  and
Applications, Addison-Wesley, (2000).

7. Klaus Schmidinger: vdr Projekt Homepage, (2002), www.cadsoft.de/people/kls/vdr.
8. Detlef  Streitferdt,  Matthias  Riebisch,  Ilka  Philippow:  Details  of  Formalized  Relations  in

Feature Models Using OCL. In Proceedings of the 10th IEEE Symposium and Workshops on
Engineering of Computer-Based Systems, Huntsville Alabama, USA, (2003).

9. OMG: Unified Modeling Language Specification, (1999), www.omg.org.
10. M.  Heiskala,  A.Anderson,  V.Huhtinen,  J.Tiihonen,  A.Martio:  A  Tool  for  Comparing

Configurable Products. In Proc. of Workshop on Configuration of the 18th International Joint
Conference on Artificial Iintelligence, (2003).

11. Asikainen,  T.,  Männistö,  T.,  Soininen,  T.:  Using  a  Configurator  for  Modelling  and
Configuring Software Product Lines Based on Feature Models. In Proceedings of Software
Variability  Management  for  Product  Derivation  -  Towards  Tool  Support  at  International
Workshop of SPLC, (2004).

12. Eclipse.org: Eclipse open extensible IDE, (2005), www.eclipse.org.
13. Danilo Beuche: Pure Variants - A Plug-In for Eclipse, (2005), www.pure-systems.com.
14. David M. Weiss, Chi Tau Robert Lai: Software Product-Line Engineering: A Family-Based

Software Development Process, Addison-Wesley, (1999).
15. Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Laitenberger, Roland

Laqua,  Dirk Muthig,  Barbara Paech,  Jürgen Wüst,  Jörg Zettel:  Component-Based Product
Line Engineering with UML, Addison-Wesley, (2002).

16. Martin L.  Griss,  John Favaro,  Massimo d'  Alessandro:  Integrating Feature Modeling with
RSEB. Hewlett Packard, (1998).

17. W3C: Extensible Markup Language (XML) 1.0(Second Edition). , (2000).
18. W3C: XML Linking Language (XLink) Version 1.0. , (2000).
19. Novell: SUSE Linux Professional, (2005), www.novell.com/de-de/linux/suse/.
20. www.vdr-portal.de: VDR - Portal, (2005), www.vdr-portal.de.
21. The Apache Ant Project: Ant - A Java Build Tool, (2004), ant.apache.org.


