
Abstract
Maintaining software systems is a very time con-

suming activity, taking longer than actually develop-
ing the software. The crucial part within the mainte-
nance phase is to understand the system. It is hard to
understand legacy systems with poor or even no docu-
mentation. The recovery of an object-oriented software
architecture is the first step towards understanding a
system, but the resulting class structure is often still
too complex to quickly get the idea of the system. The
knowledge of design patterns possibly used can sup-
port a faster and better understanding of software sys-
tems. We evaluated existing pattern recognition ap-
proaches by the Information Retrieval criteria preci-
sion / recall and developed our own pattern search al-
gorithms for the 23 patterns described in [1]. This pa-
per presents first results of our approach for pattern
search algorithms and discusses architectural issues of
our implementation of the algorithms implemented as
plug-in for the Together development IDE. This work
is part of the InPULSE project [2], funded by the
BMBF [3].

Keywords: Pattern Recognition, Software Patterns.

1 Introduction
Maintenance activities are aiming towards the

management and integration of new or changed re-
quirements. For this purpose software developers have
to understand the existing system completely, al-
though documentation like specifications or design
models are poor or missing at all. Mostly only the
source code, as the most rudimentary and reliable
form of documentation, is available.

Design patterns offer predefined and tested solu-
tions for fundamental design problems. The usage of
design patterns leads to benefits for new and young
developers by enabling them to reuse the knowledge of
their experienced colleagues. Identification of design

patterns contained in system as well as determination
of source code classes for the identified patterns would
lead to an improved understanding of the pattern
based part of existing systems. Patterns are not explic-
itly described in software source code - excluding an-
notations or references in the documentation. The in-
formation about design patterns used in software sys-
tems is implicitly hidden and has to be detected manu-
ally in most cases.

This paper presents first results of our approach for
pattern search algorithms in existing source code and
discusses architectural issues of our implementation of
the algorithms. Our approach is an extended version
of existing pattern search algorithms based on mini-
mal key structures. It focuses on the patterns described
in [1], since they are a selection of practically relevant
and useful patterns for software developers and the de-
facto standard. We present the first results of the
search for patterns in four systems of a size of up to
1035 classes.

2 State-of-the-Art
Existing methods for automated pattern identifica-

tion are evaluated according to the achieved results of
their search algorithms. Depending on the found and
actually existing patterns in a given system three re-
sults are possible:

• True positive in case a pattern has been recog-
nized and the pattern is really implemented within
the software system. This case is desired.

• False positive in case a pattern has been recog-
nized and the pattern is not really implemented
within the system. This case has to be avoided.

• False negative in case an implemented pattern has
not been recognized. This case has to be avoided.

Based on the achieved results it is possible to derive
metrics for the evaluation of searching tools, as de-
scribed by the recall and the precision of the corre-

Searching Patterns In Source Code

Detlef Streitferdt, Christian Heller, Ilka Philippow
Ilmenau Technical University

detlef.streitferdt@tu-ilmenau.de

sponding algorithms. Both metrics are used widely for
evaluating search results, e.g. in Information Retrieval
[4].

• Recall is the number of all implemented patterns
in a software system divided by the number of rec-
ognized patterns. A recall of 100% means that at
least all implemented patterns were recognized.
One might have recognized more, but the imple-
mented patterns are all recognized - case 2, false
positive has been avoided.

• Precision is the ratio of recognized and really im-
plemented patterns (true positive) divided by the
number of recognized patterns (sum of the results
true positive and false positive). A precision of
50% means, that half of the recognized patterns
are not really implemented in the software system.

Both values have to be taken into consideration for
a tool evaluation. A precision value of 100% does not
exclude false positive cases.

As the result of our evaluation of DP++ [5], KT [6],
SPOOL [7], Pat [8], IDEA [9], the multi step search
tool in [10], Fuzzy Logic algorithms [11], Pattern
Wizard [12] and BACK-DOOR [13] we developed
new algorithms and extended existing search algo-
rithms by minimal key structures [14].

3 Searching minimal key structures
The novelty of our approach is the definition of

negative search criteria for all of the 23 patterns de-
scribed in [1]. With these criteria we developed search
algorithms, which we used in our plug-in implementa-
tion for the Together IDE. In Figure 1 the graphical
representation of expected, forbidden and uncertain
elements within patterns is shown. To identify a part
of a software system as pattern expected elements have
to be part of this structure, forbidden elements are not
allowed to be part of the structure and uncertain ele-
ments may or may not be part of the structure.

Class

Subclass

Class

Subclass

Class

Subclass

All elements
are expected.

Existence of
the subclass and
the inheritance
relationship is
uncertain.

The subclass and
the inheritance
relationship are
forbidden.

Figure 1: New search criteria

In case uncertain elements should be part of the
analyzed system, all search criteria defined for these
elements have to be checked as well. If the class
SpecializedAbstraction in Figure 2 should ap-
pear in the system architecture, the class
Abstraction is the mandatory super class of
SpecializedAbstraction.

Abstraction

Operation()

SpecializedAbstraction

Figure 2: Example for uncertain criteria

As an example, developers can realize a variability
point in the architecture of a system with the strategy
pattern out of the behavioral group in Gamma. Many
strategies can be implemented and even new strategies
in future versions of the system are possible.

Context Strategy
Operation()

ConcreteStrategyA
Operation()

ConcreteStrategyB
Operation()

Figure 3: Search criteria for the strategy pattern

Our new search criteria are the basis for the algo-
rithms we developed to analyze given source code.
Thus, the code below addresses all the elements given
in Figure 3.

create a set X of model-trees
for the given system

for-each tree T
{
R = root-class of T
if(R is abstract)
{
SC = subclasses of R
for-all j in SC
{
if((public interface subclass ==
 public interface root-class) &&

j has no ref. to R &&
j has no ref. to classes in SC)

{
for-all classes k in system
{
if(k has ref. to R &&

 k has no ref. to classes in SC)
{
==> pattern found

}
}

}
}

}
}
Pseudocode 1: Search algorithm for the strategy pattern

3.1 Plug-in Architecture
We implemented the pseudo-code of the 23 search

algorithms, as shown in Pseudocode 1, in Java as a
plug-in for the Together v6.0.1 IDE (Integrated Devel-
opment Environment). This implementation makes
use of two APIs (Application Programming Interfaces)
to access the reverse engineered UML (Unified Model-
ing Language) model of a software system and the cor-
responding source code, since not all the necessary in-
formation for pattern searching is available in the
UML model, because of an incomplete reverse engi-
neering. This situation is shown in Figure 4.

Pattern
Search
Algorithms

Together v6.0.1

Model Access
(RWI)

Sourcecode Access
(SCI)

Figure 4: Architecture of the Plug-in

With our current implementation we encountered
problems with source code leading to ambiguous UML
models, as shown in Table 1. Especially the 0..* mul-
tiplicity is hard to analyze, given the numerous imple-
mentation possibilities for lists in C++ or Java.

Source Code UML-Relation

B* ag;
A B

ag

A B
0..1

ag

B kp; A B
kp

list ag;
vector ag;
deque ag;
OwnList ag;

A B
0..*

ag

Table 1: UML-Relation with multiplicities

In addition to the above mentioned ambiguities
Gamma used the “creates” relationship which is not
standardized in the UML. To realize all the algorithms
we had to implement a rudimentary source code parser
to extract code, that creates new classes like the new
construct in C++.

3.2 Search Results
We tested our algorithms with several systems.

Patterns is one of our own systems implemented in
Java with 88 classes. It is the one-to-one implementa-

tion of all 23 Gamma patterns and has no functional-
ity. Based on the fully known structure of the system
with all its patterns, Patterns is currently our best test
system. Drawlet is picture editor with 195 classes im-
plemented by Rolemodel Software [15]. The Abstract
Windowing Toolkit (AWT) is part of the Java 2 Stan-
dard edition [16] with 354 classes. As the fourth sys-
tem we have taken Tomcat out of the Jakarta Open
Source project [17] with 1035 classes.

The documentation taken from [18] for the AWT
and Tomcat projects and taken from [19] for the
Drawlet project was the only source to understand
which patterns were used and where these patterns are
located within the architecture of the software. Unfor-
tunately the patterns are just sparsely documented.
Thus, we were not able to calculate the values for pre-
cision and recall for these systems.

System

Pa
tte
rn
s

D
ra
w
le
t

A
W
T

To
m
ca
t

Search
Algorithm

in
cl

ud
ed

fo
un

d

in
cl

ud
ed

fo
un

d

in
cl

ud
ed

fo
un

d

in
cl

ud
ed

fo
un

d

C
re

at
io

na
l

Abst. Fact. 1 1 n 3 y 10 n 4

Builder 1 12 n 87 n 127 n 469

Fact. Meth. 4 4 y 13 n 27 n 22

Prototype 2 2 y n n 11 n 2

Singleton 1 1 n n y 8 n 6

S
tr

uc
tu

ra
l

Adapter 1 3 n 40 n 52 y 123

Bridge 1 25 n 61 y 61 n 345

Decorator 1 1 n n n n n n

Facade 1 77 n 194 n 322 y 973

Flyweight 1 1 n n y n n n

Composite 1 1 y n y n n n

Proxy 1 3 n 9 n 14 y 73

B
eh

av
io

ra
l

Command 1 1 n 13 n 20 n 46

Observer 1 1 y n y n y n

Visitor 1 1 n 1 n 6 n 4

Interpreter 2 2 n n n n n n

Iterator 1 1 y n n n n n

Memento 1 1 y n n n n 3

Temp. Meth. 1 1 y 1 y 22 n 17

Strategy 1 17 y 4 n 4 y 12

Mediator 1 25 y 135 y 88 n 220

State 1 1 n n n n n 2

Chain Of R. 1 3 n n n n y 26
The table entries are the number of patterns included in the system
or found in the system.
y Pattern was used when designing the system, but we don't

know how often
n We don't know wether the pattern is in the system.

Table 2: Summary of our search results

The results for the Patterns system in Table 2
show, that 15 of the 23 algorithms are able to find pat-
terns correctly. The remaining 8 algorithms have to be
further analyzed to improve their searching results.

4 Conclusion and further work
In this paper we presented the first testing results of

pattern search algorithms for the 23 patterns described
by Gamma et al. in his book. The algorithms have
been implemented in Java as plug-in for the Together
IDE. The key point when searching patterns in source
code is the quality of the reverse engineered model.
Ambiguities between source code and UML models
lead to incomplete class relations, which causes our al-
gorithms to fail.

We are currently working on improved versions of
our algorithms to gain a higher search precision. We
are also working on an heavily extended reference im-
plementation of all the Gamma patterns. With the full
source code and documentation this reference system
makes precise evaluation of pattern search algorithms
possible, together with exact precision and recall val-
ues.

5 References
[1] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, "Design Patterns - Elements of Reusable Object-
Oriented Software", Addison-Wesley, 1995.

[2] InPULSE, "Integrative Pattern- und UML orientierte
Lern- und System-Entwicklungsumgebung", 2004,
www.inpulse-online.de.

[3] BMBF, "Bundesministerium für Bildung und
Forschung", 2004, www.bmbf.de.

[4] Salton G., "Introduction to Modern Information Re-
trieval", McGraw-Hill, New York, 1983.

[5] Jagdish Bansiya, "Automatic Design-Pattern Identifica-
tion", 1998,
www.ddj.com/articles/1998/9806/9806a/9806a.htm?topic=p
atterns.

[6] Kyle Brown, "Design reverse-engineering and automated
design pattern detection in Smalltalk", 1996,
hillside.net/patterns/papers.

[7] Rudolf K. Keller, Reinhard Schauer, Sebastian Robi-
taille, Patrick Page, "Pattern-based reverse-engineering of
design components", In Proceedings of the 21st International
Conference on Software Engineering, Los Angeles, USA,
pp. 226-235, IEEE Computer Society Press, May, 1999.

[8] Christian Krämer, Lutz Prechelt, "Design recovery by
automated search for structural design patterns in object-ori-
ented software", In Proceedings of the Working Conference
on Reverse Engineering, pp. 208-215, Monterey, CA, No-
vember, 1996.

[9] Frederico Bergenti, Agostino Poggi, "Improving UML
designs using automatic design pattern detection", In Pro-
ceedings of 12th International Conference on Software Engi-
neering and Knowledge Engineering SEKE, pp. 336-343,
Chicago, IL, 2000.

[10] G. Antoniol, R. Fiutem, L. Cristoforetti, "Design pat-
tern recovery in object-oriented software", In Proceedings of
the 6th International Workshop on Program Comprehension,
pp. 153-160, Ischia, Italy, June, 1998.

[11] Jörg Niere, Jörg P. Wadsack, Lothar Wendehals, "De-
sign pattern recovery based on source code analysis with
fuzzy logic", 2001, www.upb.de/cs/ag-schaefer/Veroeffentli-
chungen/Quellen/Papers/2001/tr-ri-01-222.pdf.

[12] Hyoseob Kim, Cornelia Boldyreff, "A method to re-
cover design patterns using software product metrics", In
Proceedings of the 6th International Converence on Software
Reuse ICSR6, Vienna, Austria, Juny, 2000.

[13] Forrest Shull, Walcelio L. Melo, Victor R. Basili, "An
inductive method for discovering design patterns from ob-
ject-oriented software systems", Technical Report UMIACS-
TR-96-10, University of Maryland, 1991.

[14] Ilka Philippow, Detlef Streitferdt, Matthias Riebisch,
Sebastian Naumann, "An approach for reverse engineering
of design patterns", Software & Systems Modeling Journal,
http://springerlink.metapress.com/link.asp?id=0dn4pmqh5u
hnbk69, 2004.

[15] Rolemodel Software, "Homepage", 2004,
www.rolemodelsoftware.com/drawlets/index.php.

[16] Sun.com, "Java 2 Standard Edition", 2004,
java.sun.com/j2se/1.4.0.

[17] Apache.com, "Jakarta, Tomcat", 2004,
jakarta.apache.org/tomcat.

[18] Wiki-Server, "PatternStories", 2004,
wiki.cs.uiuc.edu/PatternStories/DesignPatterns.

[19] Ken Auer, "Fundamental Elements of an Extendible
Java Framework", Rolemodel Software,
www.rolemodelsoftware.com, 1997.

