A new Pattern Systematics

Christian Heller<christian.heller@tu-ilmenau.de
Detlef Streitferdt<detlef.streitferdt@tu-ilmenau.de
llka Philippow <ilka.philippow@tu-ilmenau.de

Technical University of limenau
Faculty for Computer Science and Automation
Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 limenau, Germany
http://www.tu-ilmenau.de, fon: +49-3677-69-1230, fax: +49-3677-69-1220

Abstract On the way to reaching such sublime aims, a first step is

o o _to look at current pattern solutions and try to identify what
Software patterns are a great aid in designing the architggsic -ommon characteristics are. This is what the next sec-

ture of application systems. They provide standard solutiqfis,s will do. Those experts who sufficiently know the pat-

for'frequent'ly occuring problems. .. terns explained following, may skip over section 2 and con-
This paper introduces a new schema for systematizing Rte reading at section 3.

terns. It arose from firstly, the investigation of a whole spec-

trum of different patterns and secondly, the application of

the principles of human thinking to the classification of thege pattern
patterns.

This new way of sorting patterns uncovers their commagn .
advantages but also disadvantages and may have the p(%élh- Definition
tial to better support developers in choosing the right patt
solutions for their problems.

Keywords. Software Design, Pattern Systematics,
Cybernetics Oriented Programming, CYBOP

eI5£]1ttern$ in a more correct form calleBoftware Patterns
represent solutions for recurring software design problems
and can be understood as recommendations for how to build
software in an elegant way. In the past, more detailed defi-
nitions have been given by meanwhile well-known authors.
1 Introduction Christopher Alexander, an architect and urban planner,
writes [1]: Each pattern describes a problem which occurs
Patternsare a popular architecture instrument of curreger and over again in our environment, and then describes
systems and languages — in the first line, howevelgect the core of the solution to that problem, in such a way that
Oriented ProgrammingOOP). They describe design soluyou can use this solution a million times over, without ever
tions that belong to a higher conceptual level, as opposgfing it the same way twickle gave this definition primar-
to the programming paradigms which are inherent to Iaify for problems occuring in architecture, construction, and
guages. urban/regional planning, but it can be applied in the same

A common critics on the existence of patterns is put infaanner to software design, as done first by Ward Cunning-
words by the fre&Vikipediaencyclopedia [5] that writes: ham and others [16].

The systems designer Swift [7] sees a patterneas:
sentially a morphological law, a relationship among parts
(pattern components) within a particular context. Specifi-
cally, a pattern expresses a relationship among parts that
resolves problems that would exist if the relationship were
missing. As patterns express these relationships, they are
not formulae or algorithms, but rather loose rules of thumb
or heuristics.

In other words, patterns would become superfluous, if TheGang of FourErich Gamma et al.) applied Alexan-
they could be applied jusinceto a system, in a mannerder’s definition to object oriented software and created a
that allowed any other parts of that system to reference amldole catalogue of design patterns [10]. After them, pat-
reuse-, instead of copy them. terns areStructured models of thinking that represent reusable

The investigation of possibilities to better abstract knowelutions for one-and-the-same design problem. They shall
ledge in software belongs to the aims of tgbernetics support the development, maintenance and extension of large
Oriented ProgrammindCYBOP) project [24]. It wants to software systems, while being independent from concrete
eliminate the need for repeated pattern usage, and suchimplementation language$he experts identified four ba-
able application programmers, and possibly even domain elements of each pattefMdame Problem Solutionand
experts, to faster create better application systems. Consequencgadvantages and disadvantages).

Some feel that the need for patterns results from
using computer languages or techniques with in-
sufficient abstraction ability. Under ideal factoring,
a concept should not be copied, but merely refer-
enced. But if something is referenced instead of
copied, then there is no pattern to label and cata-
log.

For Frank Buschmann et al., software patterns cont@&r8 Examples
the knowledge of experienced software engineers and hej

to improve the quality of decision making [3]. In his opin:”ﬁs section briefly describes a greater number of known

ion, they areProblem Solution Pairsthat is basic solutions patterns. _They are basic.examp.les referenced by the pattern
for problems that already occured in a similar way beforeSYStematics introduced in section 4.2, later-on. However,
Martin Fowler means that pattern is some idea thatSince this section does not want to copy the work accom-

already was helpful in a practical context and will probapIiShed l_)y th_e afqrementioned authors, i.t refers to th_e cor-
bly be useful in other contexts, td8]. After him, patterns, responding literaric source for more detailed explanation.

however they are written, have four essential p@tmtext

Problem ForcesandSolution Architectural Architectural Patternsare templates for the
Depending on their experience, software developers pgoess design of software systems. They describe concrete

duce good or bad solutions. One possibility to improve lessftware architectures and provide basic structuring (mod-

well-done designs or to extend legacy systemsAmé- ularization) principles.

Patterns(telling how to go from a problem to a bad design),

or the contrasting\melioration Patterngtelling how to go Layers TheLayerspattern [3] is one of the most often used

from a bad- to a good solution) [16]. Both help finding paprinciples to subdivide a system into logical levels. One

terns in wrong-designed systems, to improve these. famous variant contains the three lay@resentationDo-
There are efforts to combine patterns to fornPat- main LogicandData SourceAnother well-known example

tern Languagealso calledPattern Systenf3]. Such sys- making use of this pattern is tf@pen Systems Intercon-

tems describe dependencies between patterns, specify nggion(OSI) reference model, defined by timernational

for pattern combination and show how patterns can be ifrganization for Standardizatio(iISO). Numerous books

plemented and used in software development practice. [25, 23] describe this model and its protocols.

2.2 Classification

Several schemes &httern Classificatiorexist. One possi-
ble is shown in figure 1. Considering the level of abstrac-
tion (granularity), it distinguishes betweerchitectural, //
Design-andldiomaticpatterns [3]. Design patterns, in turn, [wern-1 K

are divided after their functionality (problem category) into b \
Creational; Structural-andBehaviouralpatterns [10]. The e
Wikipedia Encyclopedia [5] mentions three further prob- @
lem categories=undamental-ConcurrencyandReal-time |
patterns. Other criteria (dimensions) of classification exist. \
Fowler introduces a completely different category which he ‘
callsAnalysis Pattern8]. These are applicable early in the
Software Engineering Proce¢SEP). And he defines pat-
terns that are more often used for describing the modelling
Languagethan the actuaMlodelsasMeta Model Patterns

layer n }7 — ‘higheslabstracnon level ‘

layer 1 }7 — ‘Iowest abstraction level

Fig. 2. Layers Pattern

A more general illustration can be seen in figure 2. It
pattern shows a client using the functionality encapsulated in a layer.
ﬁl That top-most layer delegates subtasks to lower-level layers
\ \ | which are specialized on solving them.
architectural design idiomatic One variant of this pattern, mentioned by Buschmann
% [3], is theRelaxed-Layered-Systethpermits a layer to not
| | | only use the services of its direct base_laye_r, but als_;o of yet
lower-situated layers. The base layer in this case is called
creational structural behavioural transparent

Data Mapper Besides theDomain Logi¢ standard three-

tier architectures contain@ata Sourcdayer which may for

example represent a database. Both layers need to exchange

data. Modern systems use OOP methods to implement the
Fig. 1. Software Pattern Classification domain model. Database models, on the other hand, are of-

ten implemented aBntity Relationship ModdERM).

In order to avoid close coupling and a mix-up of bothl. Presentation
layers, the introduction of an additionahta Mapperlayer 2. Application Process
[9] in between the two others may be justified (figure 3)3. Domain Model
The most important idea of this pattern is to abolish the ind. Data Mapper
terdependencies of domain- and persistence model (datab&s@&ata Source

...the application process does not only access the do-
main model layer, it also has to manage (create and destroy)

[domaintayer | the objects of the data mapper layer. In other words, it sur-
[somanotioct . N imtoraces passes (disregards) the.domaln model layer when accessing
Tid ong object_finder the data mapper layer directly.

+ find(id : long)
~

— T S Data Transfer Objectlt is a well-known fact that many
lata mapper layer

N small requests between two processes, and even more be-
bject . .
N e tween two hosts in a network need a lot of time. A local
#1oad() machine with two processes has to permanently change the

Program Contexta network has a lot dfransfers For each
. request, there is a necessity of at lelagh transfers — the
‘ Questionof the client and thénswerof the server.

Transfer methods are often expected to deliver common
data such as a Person’s address, that is surname, first name,
street, zip-code, town and so on. These information is best
retrieved by onlyonetransfer call. That way, the client has

Fig. 3. Data Mapper Pattern to wait only once for a server response and the server does
not get too many single tasks. In this example, all address
data would best be packaged together and sent back to the

L - client.
The dashed arrows in figure 3 indicate dependenmgg.m

The data mapper layer knows the domain model- as well as
the data source layer, vianidirectional relations. Its task
is to translatebetween the two, in both directions. Domain

model and data source know nothing from each other. [domainiayer | [dtomyer |
Each domain model class knows its appropriate inter- | domain_obiect 1 [l domain_object_2 | data transfor_object

face pbjectfinder) but does not know the implementation [-attribute_t | [-atiibute 2 | -atirbute_1

of the same. That is, persistence- and data retrieval mecha- e !

nisms are hidden in front of the domain model. The imple-
mentation ¢bjectmappe) is part of the mapping package
and also implements all finder methods. It maps data of the
received result sets to the special attributes of the domain
model objects. assombiel)
The Mediator pattern [10] is similar to thdlapper, in + disassemble()
that it is used to decouple different parts of a system. Fowler
[9] writes: . . . the objects that use a mediator are aware of
it, even if they aren’t aware of each other; the objects that a
mapper separates aren’t even aware of the mapper.
Although theData Mappermattern is very helpful atim- Fig. 4. Data Transfer Object Pattern
plementing OO systems, two things are to be criticised:
Firstly, since thebjectfinderrelies on functionality spe-
cific to the retrieval of persistent data, it does actually be-
long into the data mapper layer what, if done, would create A scenario of that kind is exactly what tB&ata Transfer
bidirectional dependencies between the domain model- @ilgjectpattern [9] proposes a solution for: A centfasem-
data mapper layer. But also with tledjectfinder remain- bler object takes all common data of the server's domain
ing in the domain model layer, dependencies are not puretpdel objects and assembles them together into a special
unidirectional. It is true that from an OO view, they aréData Transfer Objec{DTO), which is a flat data structure
Internally, however, a super class or interface relates to(figure 4). The server will then send this DTO over network
inheriting classes, so that it can call their methods to satisfythe client. On the client’s side, a similar assembler takes
the polymorphic behaviour. the DTO, finds out all received data and maps (disassem-
Secondly, the layers do not truely build on each othdéles) them to the client's domain model. In that manner, a
Taken a standard architecture consisting of the followijrO is able to drastically improve the communication per-
five — instead of only three — layers: formance.

assembler layer

assembler

Model View Controller After having had a closer look attheir controller object. Following theayerspattern, only
design patterns for persistend2ata Mappe) and commu- neighbouring layers know from each other.
nication Data Transfer Objegt this section considers the As a practical example, the upper-most triad could rep-
presentation layer of an application, which is often realizggsent a graphicdbialog and the next lower one Banel
in form of aGraphical User Interfac€GUI). Being a container, too, the panel could hold a third triad like
Nowadays, the well-knowklodel View Controlle(MVC)for example @utton Events occuring at the button are then
pattern [3, 9] is used by a majority of standard applicationsormally processed by the corresponding controller belong-
Its principle is to have théodelholding domain data, theing to the button’s triad. If, however, the button controller
Viewaccessing and displaying these data andetroller cannot handle the event, that is forwarded along the chain
providing the workflow of the application by handling anwf responsibility to the controller of the higher-next layer. If
action events happening on the view (figure 5). This seflso the panel controller does not know how to handle the
aration eases the creation of applications with many syvent, the final responsibility falls to the controller of the
chronous views on the same data. Internally, the MVC majalog’s triad.
consist of design patterns like: The HMVC is similar to thePresentation Abstraction

. . Control (PAC) pattern [3]. APAC Agentis comparable to
- Observemotifying the views about data model changeg, yvv e Triad

Strategy[10] encapsulating functionality of the con-
troller, to make that functionality easily exchangeable
- Wrapperdelegating the controller functionality to the
strategy mentioned before :
Compositeequipping graphical views with a hierarchi- o

i = hild
cal structure ohi

=9 =

Some MVC implementations like parts of theva Foun- ["moce | yeezima] p\t
dation Classe4JFC) use a simplified version not separat- view <= = controller [yl chia
ing controllers from their views. Thdlicrosoft Founda- -3 §
tion ClassegMFC) C++ library calls its implementation [model | [layeratriad | parent
Document-View view = >|con\"°..e,

Fig. 6. Hierarchical Model View Controller Pattern

Microkernel The Microkernel pattern [3] allows to keep

a system flexible and adaptable to changing requirements
or new technologies. A minimal functionkernelgets se-
parated from extended functionality. The kernel may call
internal- or external servers (figure 7) to let them solve spe-
cial tasks which do not belong to its own core responsibility.
Fig. 5. Model View Controller Pattern Internal servers are often call@hemons

This pattern provides Rlug & Play environment and
serves as base architecture for many mo@grarating Sys-
tems(OS). Andrew S. Tanenbaum recommends its use as

. . . well [26].
Hierarchical Model View ControllerThere exist several ex-

tensions of the MVC pattern, one of them being Hier-

archical Model View Controlle(HMVC) [4]. It combines Broker The Broker pattern [3] may support the creation of

the pattern€ompositeLayersandChain of Responsibility an IT infrastructure for distributed applications. It connects

into one conceptual architecture (figure 6). decoupled components which interact through remote ser-
This architecture divides the presentation layer into hiice invocations (figure 8).

erarchical sections containing so-callety/C Triads The The broker is responsible for coordinating all commu-

triads conventionally consist dModel ViewandController, nication, for forwarding requests as well as for transmitting

each. They communicate with each other by relating owesults and exceptions.

calls sends

service request
m adapter 9 external_server decod filter_2 "
lecode encode
do_task() call_service() receive_request() encode()

create_request() dispatch_request() decode()
- execute_service()
initializes
communication
encode decode
filter_1 filter_3
calls
encode() encode()

- activates -
microkernel internal_server

decode() decode()

execute_mechanism() receive_request()

init_communication() execute_service()

decode

encode
find_receiver()

create_handle()

send_message()

call_internal_server()

Fig. 7. Microkernel Pattern Fig. 9. Pipes and Filters Pattern
transmits transmits
message
client_side_proxy broker server_side_proxy
pack_data() main_event_loop() pack_data() meta meta level
unpack_data() update_repository() unpack_data() ‘
send_request() register_service() call_service()
return acknowledge() send_response()
find_server()
find_client() justallsvel
forward_request() # ‘ modifies
forward_response() ‘ meta_object_1 ‘ ‘ meta_object_2 ‘ ‘me!a_object_protocol‘
calls A A
retrieves i
calls uses uses calls information ‘ ‘ modifies
- api N api
client bridge server
call_server() pack_data() initialize() base level ‘ uses uses uses uses
start_task() unpack_data() enter_main_loop() hJ
P) ‘ component_1 ‘ ‘ component_2 ‘ ‘ user_interface ‘
use_broker_api forward_message() run_service() -
[S — rovides
transmit_message() use_broker_api() ‘iw:: tq
Fig. 8. Broker Pattern Fig. 10.Reflection Pattern

Pipes and FiltersSystems that process streams of data may Reflective informatioraboutsomething is calledeta
use thePipes and Filterspattern [3]. It encapsulates everypformation Therefore, the level above tigase Leveln
processing step in an owkilter component and forwardsfigure 10 is labelledMeta Level The base level depends
the data through channels which are calpeline(figure on the meta level, so that changes in the meta level will
9). Families of related systems can be formed by changiigo affect the base level. All manipulation of meta objects
the. Single fllter pOSitionS. The data forwarding can fO”OWappenS through an interface callg@éta Object Protocol
various scenarios: (MOP), which is responsible for checking the correctness
of- and for performing a change. If a further level holds
information about the meta level, then that additional level
is calledMeta Meta Leveland so forth.

Many examples of meta level architectures exist. In his
book Analysis Pattern$8], Fowler uses them extensively.
He talks ofKnowledge Levdinstead of meta level) ardp-
Reflection The Reflectionpattern [3] (also known undererational Levelinstead of base level). Elements of thmsi-
the synonymsOpen Implementatioor Meta-Level Archi- fied Modeling Languag@JML) are defined in an own meta
tecturg provides a mechanism to change the structure amddel [22]. And the principles of reflection are also sup-
behaviour of a software systestynamically that is at run- ported by several programming languages, su@naalltalk
time, which is why that mechanism is sometimes catedr [20] andJava[17].

Time Type Identificatio(RTTI). A reflective system owns Classes (types) in a system have a static structure, as
information about itself and uses these to remain changefined by the developer at design time. Normally, most
able and extensible. classes belong to the base level containing the application

Push:active filter pushes data to passive filter
Pull: active filter pulls data from passive filter
Mixed Push-Pull-Pipelineall filters push or pull data
Independent Loopsll filters actively access pipeline

logic. As written before, one way to change the structure
and behaviour of classes at runtime is to introduce a meta
level providing type information, in other words functional-
ity thatall application classes need. This helps avoid redun-
dant implementations of the same functionality.
Looking closer at functionality, it turns out that some
basic features like persistence and communication occur re- N p—
peatedly in almost all systems, while other parts are specific [reauesto | [specif_roquesty |
to one concrete application. Traditionally, the application :
classes in the base level have to cope with general system |
functionality although that is not in their original interest.
It therefore seems logical to try to divide application- and
system functionality, and to put the latter into a meta level.

Design Gamma et al. [10] define a design pattern des:

scription of collaborating objects and classes which are tay- Fig. 12.Wrapper Pattern
lored to solve a general design problem in a special context.

Mostly, patterns are in relation to each other. They can be

combined to master more complex tasks.)
Whole Part Whenever many components form a semantic

unit, they can be subsumed by tidhole-Partpattern [3].
CommandThe Commandpattern [10], also known a&c- It encapsulates single part objects (figure 13) and controls
tion or Transaction sometimes als&ignal encapsulates atheir cooperation. Part objects are not addressable directly.
command in form of an object. That way, operations can get Aimost all software systems contain components or sub
parameterised; they can be put in a queue, be made undgg¢ems which could be organized by help of this pattern.
or traced in a log book. Figure 11 shows the structure of thesome way, it is quite similar to the previously introduced

pattern. Wrappet only that not just one- but many objects are wrapped.
client invoker }—> part_1
‘ service_1_a()
: AN service_1_b()
I cal_s X
| m concrete_command service_a() service_2_a()
I action() state service_b() service_2_b()

b - - — - — — - - — = =] execute() |

7 Pt
service_n_a()

service_n_b()

Fig. 11.Command Pattern Fig. 13.Whole-Part Pattern

Wrapper The Wrapperpattern [10] allows otherwise im-Composite A hierarchical object structure, also callBi-
compatible classes to work together. It can be seen as skitted Acyclical Grapt{DAG) or Tree can be represented
object enclosing (wrapping) an inner core object, to whigly a combination of classes call€@mpositepattern [10].
it provides access. In other words: It adapts the interfaceipfiescribes &Componenthat may consist o€hildren (fi-
a class which is why Gamma et al. call the patt@daptet gure 14), which makes it comparable to iN@ole-Partpat-

As can be seen in figure 12, this pattern makes hedeyn. The difference is that tf@omposités a more general-
use ofDelegation where theDelegatoris the adapter (or ized version, with a dynamically extensible number of child
wrapper) and th®elegateis the class being adapted [16]. (part) objects.

TheComposites a pattern based dRecursionwhich is

Frequently, the pattern gets misused by delegating mes-

one of the most commonly used programming techniquesages not only to children but also to the parent of objects.
all. The pattern’s split inth.eaf-andCompositesub classes TheHierarhical Model View Controlle(HMVC) pattern is
helps distinguish primitive- from container objects. A correne example for this. It causes unfavourable bidirectional

posite tree node holds objects of tygemponent

client

operation()

add(p : component)

remove(p : component)

get(p : int) : component|

‘ leaf

children

‘ operation()

‘ operation()

for each child in children:
child.operation()

7 add(p : component)

- remove(p : component;

get(p : int) : component|

Fig. 14.Composite Pattern

Chain of ResponsibilityThe Chain of Responsibilitpat-

dependencies (section 3.2) and leads to stronger coupling
between the layers of a framework, because parent- and
child objects then reference each other.

ObserverAnother pattern that found wide application is the
Observef10], an often-used synonym for whichRsiblisher-
Subscriberlt provides a notification mechanism for all ob-
jects that registered &bserverat aSubjectin whose state
changes they are interested, leading to an automatic update
of all dependent objects (figure 16).

observers

subject observer

attach(p : observer) update()
detach(p : observer)
notify() — __

for each o in observers:

o.update()

subject
_subject concrete_observer

subject_state ~_ observer_state
set_state() N 7/ |update()
get_state() ~ 4

~ /

> /

return subject_state ‘ ‘observerﬁstate = subject.get_state()

tern [10] is similar to theCompositein that it represents a
recursive structure as well. Objects destined to solve a task

are linked with a correspondirguccessoffigure 15), such
forming a chain. If an object is not able to solve a task, that

Fig. 16.Observer Pattern

task is forwarded to the object’s successor, along the chain.

handle_request()

successor

concrete_handler
handle_request()

Fig. 15.Chain of Responsibility Pattern

update

subject observer
attach(p : observer)
detach(p : observer)
notify() ’—

view

model

controller create

initialize(p: model) .
attach display
get_state | create_controller()
model — controller
display()

subject_state model
update() =
set_state() view
get_state() attach initialize(model, view)

do_service

do_service() handle_event()

update()

Fig. 17.MVC- using Observer Pattern

The pattern found wide application, for example in help
systems, in event handling frameworks or for exception han-

dling. ItsHandlerclass is known under synonyms likgent

Handler, Bureaucrator Responder

Similar notification mechanisms are used €allback
event handling in frameworks, where the framework core

calls functionality of its extensions. Tidodel View Controller-
(MVC) uses theDbservermattern to let the model notify its
observing views about necessary updates (figure 17).

A disadvantage of th®bserverpattern is that it relies
on bidirectional dependencies (section 3.2), so that circu-
lar references can occur, when a system is not programmed
very carefully.

Idiomatic An Idiomis a pattern on a low abstraction level.

It describes how certain aspects of components or the rela-
tions between them can be implemented using the means of
a specific programming language. Idioms can such be used
to describe the actual realization of design patterns. Besides
the Counted-Pointempattern, Buschmann [3, p. 377] also
categorizesSingleton Template MethodFactory Method
andEnvelope-Lette[6] asldiom.

Template MethodThe Template Methogbattern [10], also
calledHook Methodis an abstract definition of tHgkeleton
of an algorithm. The implementation of one or more steps
of that algorithm is delegated to a sub class (figure 18).

handle body

- handle : Handle - body : Body

body

ref_counter : int

operator->()

service()

handle(...)

- body(...)

handle(handle&)

- ~body()

operator=()
~handle()

Fig. 19.Counted Pointer Pattern

abstract_class
template_method()— — — — — — primitive_operation_1()

primitive_operation_1() i)“rimitiveioperation72()
primitive_operation_2()|

concrete_class

primitive_operation_1()

primitive_operation_2()

Fig. 18. Template Method Pattern

Counted PointerThe Counted Pointepattern [3] supports
memory management in tf@++ programming language,

A Registryobject as described by Fowler [9] often uses
the Singletonpattern, to be unique and to become globally
accessible. Similarly do many so-callbthnagerobjects,
for example change managers which are also responsible
for the caching of objects.

Global, that is static access — the main purpose of the
Singletonpattern, is its main weakness, at the same time
(section 3.3). One obvious solution to avoid singleton ob-
jects could be to forward global information from compo-
nent to component, possibly using an owfecycle Method
as described in Apache Jakart®#salon Framework?2].

This approach, however, might bring with a rather large
number of parameters to be handed over. The search for
further alternatives therefore remains a topic of interest.

singleton

- instance : singleton

- singleton_data

- singleton() : singleton

+instance() : singleton— — — — — — — return the only instance

+ singleton_operation()

+ get_singleton_data()

by counting references to dynamically created objects (fi-
gure 19). That way, it can avoid the destruction of an object
through one client, while still being referenced by other
clients. Also, it helps avoiding memory leaks by cleaning

up forgotten objects.

Singleton Whenever an object-oriented system wants

to

ensure that only one instance of a certain class exists, the
Singletonpattern [10] can be used. It essentially is a class
which encapsulates its instance’s data and provides global
access to them, vistatic, sometimes calledlassmethods
(figure 20).

Fig. 20.Singleton Pattern

3 Problems The JVM operates on a level underneath the actual ap-
plication, close to th®perating SysterfOS). It interprets

This section does not describe further patterns. Insteach# Java application source code and resolves all object-
wants to come back to reflective- and other mechanismso#ignted- into procedural structures, and finally low-level
described in section 2 before, and elaborate their negatiygtem instructions. All runtime objects, that is class in-
effects a bit more. Although the first of the following thregtances, are hold in dynamic structures internal to the JVM.
reviews concentrates on the examplelafa many points That is whynativemethods need to be used to access and
surely count for otheDbject Oriented Programmin@OP) change the runtime structure or behaviour of objects.

languages as well. One problem that becomes obvious when inspecting fi-
gure 21 is the existence oBidirectional Dependengylso

3.1 Broken Type System calledCircular ReferenceThe two sub dependencies caus-
ing it are:

Languages like&smalltalkor theCommon Lisp Object Sys-
tem(CLOS) offer reflective mechanisms [3]. TBa+ Stan- 1. Inheritanceof java.lang.Classfrom java.lang.Object

dard Library, also known a$ibstdc++ [18], has aype.info which is due to the rule that all Java classes need to
class providing meta information th&t++ innately does inherit from the top-most framework class
not have. 2. Associationfrom java.lang.Objectto java.lang.Class
In theJavaframework [17], finally, the basi@va.lang.* which enables every object to access its meta class us-
package contains the top-most super cjaga.lang.Object ing thegetClass(method
All other classes in the framework inherit from it. Additio-
nally, the package contains a clgasa.lang.Classwhich, The avoidance of circular references is one of the most
among others, keeps reflective (meta) type information ad&agic principles of computer programming (section 3.2).
aJavaclass” The disadvantage of bidirectional dependencies between meta-
and basic level is also mentioned by Buschmann [3]. If meta
- Package classes in the kind gfava.lang.Classdefine the structure
- Name and behaviour of all basic classes inheriting frimva.lang.
- Superior Class Object then those meta classes in turn shontd them-
- Interfaces selves inherit fromava.lang.Object
- Fields Another problem is the mixed and redundant storage of
- Methods meta information which Jonathon Tidswell [14] even calls a
- f\:ﬂ%g?}tiéurgtors Broken Type SysterHe writes:A careful examination of the

classes in the standard runtime will show that they are not
strictly instances of java.lang.Class (hint: static§ilbert
Carl Herschberger 1l [14] calls the separation of reflection
and wrappers almconsistent Desigrdava classes are based
on many different kinds of type information:

- Member Classes

Structure applied by the JVM through the usage of the

java virtual machine ‘ meta level Cl aSSkeyWO rd

Procedures java.angClass - Meta information supplied by thava.lang.Claslass
EZEES,T}jaSSo - Reflective information provided bjava.lang.reflect.*
getinteraces) - Wrapper classes for primitive typesjava.lang.*

koops e Consibrs() - Dynamlcally_ created array classes, without having an
SeiClocsest) array class file

base level The fact that thgava.lang.Classlass which is to pro-

instances javalang Object vide meta informatioraboutclasses is €lassitself is an

antagonism. It is true that that meta class is méok to

avoid its extension by inheriting subclasses. But correctly,
it should not be a class at all.
Yet how can this paradoxon be resolved? Obviously,
Fig. 21.Java Type System one of the two dependencies betwéava.lang.Objectand
java.lang.Classeeds to be cut. But then either faga.lang.
Object class would not be able to access its meta infor-
mation anymore or thg@va.lang.Classlass would not be
Via thegetClass(method which they inherit frojava. available as runtime object to other polymorphic data struc-
lang.Object(figure 21), all Java classes have access to thates. One solution could be to merge both classes, so that
reflective information in their meta class. The meta clasach object, by default, has the necessary methods to access
java.lang.Classtself uses so-calledative methods to ac- its meta information. But as it turns out, this would not be
cess the information in théava Virtual MachingJVM). a real solution, just &hift of the problem to another level.

As mentioned above, the JVM keeps all instances (objects) A Treg in mathematics, is defined &rected Acyclic
in internal, dynamic structures. If objects were allowed tBraph(DAG), also known a®riented Acyclic Graphi21].
access these internal structures via native methods (prdtkas aRoot NodeandChild Nodesvhich can becomPar-
dures), a similar kind of bidirectional dependency, betweent Nodesvhen having children themselves; otherwise they
the JVM and its stored objects, would occur. are called_eavesChildren of the same node &8éblings A

One finally has to ask whether the usage and maniputammon constraint is that no node can have more than one
tion of meta information is really necessary at all! If objectzarent, as [15] writes and continue$oreover, for some
did not have ataticstructure consisting of certain attributegapplications, it is necessary to consider a node’s children
and methods, as defined by the software developer at desighe an ordered list, instead of merely a s&tgraph is
time, but instead based on a unifordynamicallychange- acyclicif every node can be reached via exactly one path,
able structure — the need to use reflective mechanisms mighich then also is the shortest possible.
disappear. More research has to be done on this topic. In computing, trees are used in many forms, for example

There are other Java-related points to be criticised. AlsProcess Tre®f an Operating SysterfOS) or asObject
though it is worth noting they exist, these @@t explained Treeof an object-oriented application. They repreddata
in detall here, since this document wants to focus on gedtructuresin databases or file systems and also Siyatax
eral concepts. Gilbert Carl Herschberger 1l [14] mentiofseeof languages.
the problematic issue d®re-Conditions leading to corre- The violation of the principle of thécyclic Graphcan
spondingAssumptionsAfter him, such work-arounds werelead to the same loops, also calléicular Referencesas
necessary to break circular references in Java: mentioned above, which can result in the crossing of mem-

ory limits and is a potential security risk.
- Each JVM must pre-define dnternal Meta Classim-
plemented in machine code andt available as Java
bytecode in a class file. Thava.lang.Classas base 3-3 Global Access

meta class for all Java classes depends on that intefbr\lal ¢ £ inst . teRandom A
meta class and assumes its existance. pure tree ot Instances n a computeRsindom Access

- A JVM pre-defines on@rimordial Class Loaderim- Memory(RAM) represents an unidirectional structure that
plemented in machine code and resolved at compi ermits data access alongll-definedpaths. Global access

time. Since additional class loaders need to know th&lf static types, on the other hand, alloassy instance to

meta class when being created, they have to assifvidress data in memojrectly, which not only compli-
' ?tes software development and maintenance, but, due to

the primordial class loader exists so that, using it, theCF1 . . O
the uncontrollable access, is a potential security risk.

meta class can be created first.) ! :
The usage of static objects accessible by any other part

Jonathon Tidswell [14] is of the opinion that there areld & SyStem is anti Patternto Inversion of Contro(loC)
number of security issues related to the design of Java, kg highly insecure and hence undesirable.
example:
- Global names not local references are used for secuﬁlty New Systematics

- Wrappers and names are used for reflection i »]
Section 2 used traditional proposals [3, 10] to systematize

Even though most of the issues raised in this sectiBatterns and divided them according to the first categori-
are rather Java-specific, many of them apply to other p,@tion level shown in figu_re 1. The fqllowing sections will
gramming languages as weimalltalk[20] andCLU [19], work out a new systematics, to classify patterns.
for example, make primitive types look like classes and do
not need specialVrapperclasses like Java. But when dig-, o
ging deep enough, one will find that thisSgntactic Sugar 4.1 Human Thinking
as Peter J. Landin used to call additions to the syntax ofge new classification is based on the idea of categorizing
compL_Jter language that do not affect its expressiveness {yit\yare patterns after the principles ldman Thinking
make itsweeterfor humans to use [5]. that is concepts of the logichind, as opposed tértificial
Neural NetworkgANN) that want to imitate the function-
ing of the physicaBrain.

The corresponding concepts were first introduced in [12].
Bidirectional Referenceare a nightmare for every softwaréAfter an investigation of the fundamentals of human thin-
developer. They caudater-Dependencieso that changesking, that is how human beings understand their surround-
in one part of a system can affect multiple other parts whiitg real world by abstracting it iModels that paper con-
in turn affect the originating part, which may finally lea¢ludes that there were three basic activities of abstraction:
to cycles or even endless loops. Also, the actual program
flow and effects of changes to a system become very hatd Discrimination
to trace. Therefore, the avoidance of such dependencies [2e-Categorization
longs to the core principles of good software design. 3. Composition

3.2 Bidirectional Dependency

By discriminating their environment, humans are abl¢Category Equivalent |Representative |Advice
to share it into discretiems Items with similar properties |Itemization Discrimination| Command, Date)
can be classified into a common sug@ategory Any ab- Transfer Object,
stract model of the universe is just an illusion, being mad State, Memento,
up of yet smaller models, and nobody knows where this h Ep;/gg/%ee-Letter,
erarchy really stops, towards microcosm as well as toware

. . :-:1 Association [Composition |Delegator, Object-)
macrocosm. Therefore, the third and last kind of abstra¢- Adapter, Proxy

D

2=

tion, namely composition, lets humans perceive the items (Surrogat, Client-

in their environment a€ompoundf smaller items. /Server Stub),
Wrapper, Handle-
Body, Bridge

1:n Association [Composition |Whole-Part, View:-)
Handler, Brot

Category ker (Mediator)
(Living Thing) Master-Slave,
Super Command Pra-

cessor, Counted
Pointer, Chain qf
Responsibility

Z Recursion Composition |Composite, Inter:-)
preter, Decorator,
Linked Wrapper
Sub Bidirectionalism|— Observer (Call:-(
ltem L has-a = Compound back, = Publisher-
(Human Being) €~ & (Brain) Subscriber),
Forwarder-

Receiver, Chain
of Responsibility,
Fig. 22. Abstractions of Human Thinking [12] Visitor, Reflectior
Polymorphism |Categorization| Template Method:-|
Builder, Factory
Method, Class

The latter two activities of abstraction — categorization Adapter, Abstract
and composition — are based on spedabociations(fi- gactory (f}t)l’
gure 22), between Super-and aSubmodel and between a trategy (Valy

. i Poli
Whole-and aPart model, respectively. :?;ftr(')r (CU?SI:;?;)

Grouping Categorization|Layers, Domair-)
4.2 Categories Model, MVC

Global Access |- Singleton, Flyt:-(
Most patterns heavily rely on associations, too. This paper weight, Registry,
therefore suggests to: Manager

Take the Kind of Association as Criterion
to sort patterns in a completely new way.

The Opposite table shows a Systematics of the new pat- Bidirectionalism on the other hand, is @t variant of
tern categories with their equivalents in human thinkinge three aforementioned categories and should be avoided
some representative example patterns and a recommeMdirever possible. Patterns in this category are one reason
tion for their usage in software engineering. Patterns maté@t endless loops and unpredictable behaviour since it be-

ing into more than one category are placed after the priorig@mes very difficult to trace the effects that changes in one
Recursiorover Polymorphism place of a system have on others (section 3.2).

Polymorphismis a good thing. It relies on categoriza-
tion and due to inheritance can avoid a tremendous amount
of otherwise redundant source code. However, it also makes
The first categorytemization(objectification) is the base ofunderstanding a system more difficult, since the whole ar-
any modelling activity and clearly necessary. chitecture must be understood before being able to manipu-

The next three categoridsl Associationl:n Associ- late code correctly. Unwanted source code changes caused
ation and Recursionare special kinds of associations thdiy inheritance dependencies are often described with the
rely exclusively onunidirectionalrelations and result in atermFragile Base Class Probleff3, sectionLayerg. They
clean architecture which is why their usage is strongly reare just the opposite of what inheritance was actually in-
ommended. tended to be forReusability{11, Vorwort].

4.3 Recommendation

Groupingmodels is essential to keep overview in a coms.
plex software system. A very promising technology to sup-
port this areOntologies[13]. A lot of thought-work has
to go into them but if they are well thought-out, they are®-
clearly recommended.

The habit of globally accessing models is banned sinc7e'
OOP became popular. However, it is not banned completely.
Patterns likeingletorencapsulate and bundle global access \jodels. Addison-Wesley, Boston, Muenchen, 1997.
but they still permit it. They disregard any dependencies and http://www.aw.com.
relations in a system, such are a security risk and reason far Martin Fowler and et al Patterns of Enterprise Application
untraceable data changes. This paper sees the whole cateArchitecture (Information Systems Architecturefddison-
gory of Global Accesss potentially dangerous and aaot Wesley, Boston, Muenchen, 2001-2002. http://www.aw.com.
recommend its patterns. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides (Gang Of Four)Design Patterns. Elements of reusable
object oriented Software.Addison-Wesley, Bonn, Boston,
Muenchen, 1st edition, 1995. http://www.aw.com.

Volker Gruhn and Andreas Thiel. Komponenten-
modelle. DCOM, JavaBeans, Enterprise JavaBeans,
This paper investigated current software pattern solutions, CORBA. Addison-Wesley, Boston, Muenchen, 2000.
to find their common characteristics. Furthermore, some of http://www.aw.com.

the good and rather bad sides of classical patterns wk2e Christian Heller. Cybernetics oriented language (cydds.
mentioned. The paper does not deliver solutions to these Proceedings: 8th World Multiconference on Systemics, Cy-
criticisms; it merely gives an overall view on patterns. bernetics and Informatics (SCI 2004:178-185, July 2004.

Using ideas of the so-calle@ybernetics Oriented Pro- httpil//V.VWW.IIISCI.OI’g/SCI2004 or http://www.cybop.net. -

gramming(CYBOP), namelyHuman Thinkingand its forms 13. Christian Heller, Torsten Kunze, Jens Bohl, a_nd llka Philip-
. . . pow. A new concept for system communicatio®ntology

of abs.tracuon'.th.e paper categorized patterns in a new SyS'Workshop at OOPSLA Conferencactober 2003. http://swt-

tematics, consisting of eight groups. It thereby NOpes to pro- . informatik.uni-hamburg.de/conferences/oopsla2003-

vide a different view on software systems and to help iden- orkshop-position-papers.html.

tify patterns with similar concepts. By sorting patterns intq. Gilbert Carl Herschberger 1I, Jonathon Tidswell, Stephen

these groups, developers might be able to faster recognizeCrawley, and et al. The jos-general mailing list. jos-

their advantages and disadvantages. general@lists.sourceforge.net.

The search for solutions to the above-mentioned prgé$- Denis Howe. Free on-line dictionary of com-
lems needs to continue. The CYBOP project [24] aims at Puting (foldoc). Internet Database, ~September
finding a way fopattern-lesapplication programming. The 2003. http://wombat.doc.ic.ac.uk/foldoc/Dictionary.gz,

: : : : http://www.foldoc.org/.
idea is to apply necessary patterns just once, iCiteerne-) : .
tics Oriented Interprete(CYBOI), to free application de- 16. Cunningham & Cunningham Inc. Portland pattern repository,

L .. 2004. http://c2.com/cgi/wiki?PortlandPatternRepository.
velopers from the burden of repeatedly figuring out suify - g Microsystems Inc. The java programming language. the
able patterns. Instead, they shall be enabled to concentratejaya development kit (jdk). http:/java.sun.com.
on modelling pure application- and domain knowledge, hg. c++ standard library (libstdc++),
writing systems in th€ybernetics Oriented Language http://gcc.gnu.org/libstdc++/.
(CYBOL), which is based on thExtensible Markup Lan- 19. Barbara Liskov and et al. The clu programming language,
guage(XML). Future papers will report about this progress. 2004. http://www.pmg.lcs.mit.edu/CLU.html.

20. Peter William Lount. Smalltalk.org,
http://www.smalltalk.org.
National Institute of Standards and Technology (NIST). Dic-
tionary of algorithms and data structures. Online Dictionary,
July 2004. http://www.nist.gov/dads/.
Object Management Group (OMG). Unified modeling lan-
guage (uml) specification, 2001. http://www.uml.org.
Margarete Payer and Alois Payer. Computervermit-
telte kommunikation / computer mediated communication
(cmc). Lecture Notes on Website, November 2002.
http://www.payer.de/cmclink.htm.
CYBOP Project. Cybernetics oriented programming (cybop),

Collaborating contributors from around the world. Wikipedia
— the free encyclopedia. Web Encyclopedia, October 2004.
http://www.wikipedia.org.

J. O. CoplienAdvanced C++ — Programming Styles and Id-
ioms Addison-Wesley, Bonn, Boston, Muenchen, 1992.
Design Matrix Systems and Product Design,
http://www.designmatrix.com/bionicsDesign Matrix

Martin Fowler. Analysis Patterns. Reusable Object

10.

5 Summary and Future 1

2004.

2004.

21.
References

22.
1. Christopher Alexander, Sara Ishikawa, Muray Silverstein,

and et al. A Pattern Language: Towns, Buildings, Con23,
struction Oxford University Press, New York, 1977.
https://www.patternlanguage.com/cgi-bin/patternl/order.py.

. Federico Barbieri, Stefano Mazzocchi, and Pierpaolo Fuma-
galli. Apache Jakarta Avalon FrameworkApache Project, 24.

2002. http://avalon.apache.org/.

. Frank Buschmann, Regine Meunier, Hans Rohnert, and et2al,

Pattern-orientierte Softwarearchitektur. Ein Pattern-System.
Addison-Wesley, Bonn, Boston, Muenchen, 1. korr. nach-
druck 2000 edition, 1998. http://www.aw.com/. 26.
. Jason Cai, Ranjit Kapila, and Gaurav Pal. Hmvc: The layered
pattern for developing strong client tierslava World July
2000. http://www.javaworld.com/javaworld/jw-07-2000/.

2002-2004. http://www.cybop.net.

Andrew Stuart TanenbaumComputernetzwerke Pearson
Studium, Muenchen, 3rd edition, 2000. http://www.pearson-
studium.com.

Andrew Stuart Tanenbaum.Modern Operating Systems
Prentice-Hall, New Jersey, London, Sydney, 2nd edition,
2001. http://www.prentice-hall.com.

