
Abstract
Current software development requires very short

release times and at the same time high product qual-
ity. Prefabricated components used within a system
family development fulfill these needs. This planned
reuse has to be considered in all phases of the system
family development. Feature models describe the sys-
tem family in an early stage of the development cycle,
whereas components are used to describe the structure
of an application at implementation time. We are fac-
ing a gap between the feature model as starting point
to process the requirements of the customer and the
component model used to describe and derive an ap-
plication as member of the system family.

In this paper we propose a component model for
the development of system families. This model is in-
tegrated into a feature-driven development. The inte-
gration of both models and the definition of the com-
ponent model allow the automated derivation of sys-
tem family members.

Keywords: Family component model, feature
model.

1 Introduction
Modern software products shall be developed

within a short time and at the same time they should
be of a high quality. Software engineering is able to
fulfill these requirements by prefabricating compo-
nents. Within a domain, planned and comprehensive
reuse of components is supported by the concept of
system family development. A system family is based
on a reference architecture made of assets, which are
common to all family members and assets, which are
variable. Commonalities and variabilities have to be
considered in all phases of the system family develop-
ment.

With features, introduced in [1], commonalities and
variabilities of a system family can be modeled. Based
on a selection of features an application as member of

the family can be derived. This application, composed
out of the prefabricated components, has to meet the
customer requirements defined for the features, the in-
teraction of features and the corresponding compo-
nents. The feature model is the basis for the compo-
nent architecture of the system family. Thus, a compo-
nent model is needed to reflect the above mentioned
requirements of the feature model.

In this paper we propose a component model for
the automated derivation of family members based on
feature selections. The key issue of the proposed model
is the relation of features to components and between
components, which leads to a first version of the sys-
tem family architecture and enables the automated
creation of family members.

2 State-of-the-Art
A way to describe and model variabilities of system

families by means of features was initially described
by [1] in 1990 and further developed in [2], [3] and
[4]. Features describe the system family for a future
user, so that he can choose an own application, based
on the features of the family. Features should describe
an outstanding, distinguishable, user visible aspect,
quality or characteristic of a software system or sys-
tem. Based on own experience and analyses made by
[2] and [4], features are very well suited for users or
customers, to understand the system quickly and thus,
make a sound choice of their desired system based on
the features offered.

Features are arranged as a tree, the root of the tree
is the concept node, representing the system family it-
self. Every feature can be optional or mandatory. Fea-
ture leaves marked mandatory back over all levels of
the tree up to the root node, form the core of the fam-
ily. In contrast to this all other features model the vari-
abilities of the family.

As shown in Figure 1, features are hierarchically
organized starting with the concept node at the root of

A component model for applications based on feature models

Detlef Streitferdt, Ilka Philippow, Christian Heller
Ilmenau Technical University

{detlef.streitferdt | ilka.philippow}@tu-ilmenau.de

the tree. As shown, all feature leaves with only man-
datory markers up to the root of the tree belong to the
core of the system family, in the picture these features
are MPEG-2, Video and Case,. The other features
form the variabilities of the family, for example one
could choose DivX playing capabilities or not. With
the requires and excludes constraints we can further
limit the possible choices of features in the tree. For a
given feature we can state, that another feature is re-
quired or must be excluded, as modeled for the Paren-
tal Control feature, which is based on locking the re-
mote control and thus useless with the possibility of a
direct control panel at the hardware system. A valid
selection of features represents a desired application as
member of the system family.

Figure 1: Feature Model of a Video System

Extended Feature Models
In [5] feature models are extended by constraints,

that can be processed in an automated way. Over 20
new constraints are pre-defined and available for a
feature developer. As shown in Figure 2 constraints
can be defined between several features. Here a mathe-
matical constraint “m” is included. In our video sys-
tem example, we process digital TV signals, referred
to by the DVBCard feature.

Figure 2: Extended Feature Models

As mandatory parameter feature the number of
DVB cards is required. As soon as the Timeshift fea-
ture is chosen, the first constraint “m” has to be true.
This constraint defines, that the number of DVB cards
has to be greater than two. The same constraint was
defined for the Picture In Picture (PIP) feature, since
at least two DVB cards are needed to watch two differ-
ent channels at the same time.

All constraints are defined in a language similar to
the Object Constraint Language (OCL) [6]. Thus, the
feature model can be checked in an automated way for
consistency and each feature set can be validated
against the constraint rules. As a result, we can pro-
ceed the development with valid feature selections,
which are taken as input for the component model de-
scribed in this paper.

Component-based Applications
Components encapsulate and provide functionality

on an abstract level through interfaces. The function-
ality is not bound arbitrary, it is more an encapsulation
of functionality of autonomous concepts or processes
out of the same domain. This form of encapsulation
gathers knowledge out of a specific domain [7]. Cur-
rent components definitions for component based de-
velopment, like [8], [9], [10], [11] and [12] specify
components and their relations to other system parts.
For the proposed component model the interface of
components is important and has to be well defined.
Thus, we extended the component definition of [8] by
the definition of interfaces described in [13]. A com-
ponent interface is now divided into provided and re-
quired parts.

In this paper we propose a new component model
based on feature selections. Using this component
model we are able to automatically derive applications
as members of a system family. The novelty of our
model is the integration of components and features to
support the automated application creation. We relate
features to components and are able to directly derive
an early version of the system family architecture.

3 Features towards a component model
The first step towards our component model is the

definition of five features types.

1. Functional features, based on [5].

2. Interface features, based on [13].

3. Parameter features, originally defined in [4].

4. Structural features, as defined in [5]

5. Conditional features, newly introduced in this
approach.

For our component model we assume, that a cus-
tomer will choose system based on the desired func-
tional features. Each component of the system family
will have at least one functional feature. Components
without functional features won't exist. Parameters are
attached to configure functionality and are assigned to
functional features. As an example consider the re-

Digital
Video System

CaseDataformat

MPEG-4

Photo-CD

MPEG-2

DivX

Direct
Operation

Parental
Control

Slides

MP3

Video-CD

Play

Video

requires

excludes

Feature B is optionalA B

Feature B is mandatoryA B

PIP

DVBCard [No]

Timeshift

m m

cording capacity of a digital video system. The func-
tional feature “record video” should have a capacity
parameter with a value for the hours of recording
time.

As the next type we have interface features, de-
scribing a component with its required and provided
interfaces. In Figure 3 an audio conversion component
with four interface features is shown.

audioConvert

Audio
Encoding

Audio
Decoding

MP3
Standard

WAV
Standard

WMA
Standard

AIFF
Standard

Comp.

FM

SSMComponent

Functional
Feature

Interface Feature

mandatory

Figure 3: Audio Conversion Component

We know which interfaces the component is going
to support. But we don't know whether the component
is able to convert each of the decoding formats into an
encoding format. Thus, we need to extend the compo-
nent model by functional features, as described above.
The audio conversion component has three new func-
tional features, as shown in Figure 4.

Audio
Conversion

WAV WMA

audioConvert

Audio
Conversion

WAV MP3
Audio

AIFF MP3
Conversion

Comp.

FM

SSMComponent

Functional
Feature

Interface Feature

mandatory

Figure 4: New Audio Conversion Component

Now the interfaces and the possible conversions are
completely modeled. For the initial derivation of an
application out of the system family interface features
are only of minor interest. Customers are mainly inter-
ested in the functional features they can buy. The im-
portance of interface features rises when it comes to an
update of existing systems. Here new components can
only be integrated if all interfaces are known. The

graphical notation for interface features is depicted in
Figure 4.

Components don't have parameter features. As
stated above, parameter features are used to configure
functional features. Thus, they directly influence the
configuration of a component. Parameter features are
typed values.

Conditional features are relevant for an automated
choice of components. They represent, just as parame-
ter features, typed values, like the size of a hard disk
or the price of a feature. They can also represent weak
features, like the license model for a component,
which will not be numerically expressable. Functional
features may also be further described by conditional
features. They refer to features not valid for the whole
component, but only for the functionality in question,
like the sound quality or compression rate of videos

Conditional features can additionally support the
decision process. For conditional features, as typed
values, an automated decision process is possible, but
for weak features only a manual decision process is
practicable. Taking the license model example above,
most developers might understand the differences be-
tween an Open Source license and the GNU license.
Legacy license models are mostly hard to understand –
in bigger companies they will be checked by legal de-
partments. For such features only a manual decision
process is applicable. We don't address these features
in our model, this is left for future research projects.

Structural features don't influence the choice of
components. They only summarize their sub-features
and improve the readability and the overview of fea-
ture models. If a functional features is decomposed by
a set of new functional features, in most cases, the
original functional feature will become a structural
feature. For the architectural development of the sys-
tem family structural features are a good hint for com-
ponents to be build. Structural features can describe
component and all functional features through their
sub-features.

For an automated choice of components we make
use of the following four feature types, where struc-
tural features are not used for choosing components.
Functional features represent the primary require-
ments of a customer. The customers choice is mainly
influenced by functional aspects. Interface features de-
termine, which components will be part of a possible
choice. The future application must have an interface
for the integration of further components. Parameter
features describe configurations of adjustable values
for functional features of a component. Conditional
features are constraints used for the choice of compo-

nents. They can be automatically or manually evalu-
ated and are used to assess and narrow the component
choice.

Component ABM1

FM2

SSM2SSM1

FM1

PM1
[]

BM2

Component B

SSM3SSM2

FM3

1..*

Comp.

FM

BM

PM[]

SSM

SSM

Component

Functional
Feature

Conditional Feature

Parameter Feature

Interface Feature
(required)

optional

mandatory

1..* Multiplicity
Interface Feature
(provided)

Figure 5: Overview of feature-component relations

All the possible relation between features and com-
ponents are summarized in Figure 5.

Working with components
The assembly of components [8] is based on the

constraints and requirements elaborated in the feature
and component model and is performed by a compo-
nent assembler, a new role within the system family
life cycle. Features of components, that are not part of
the feature model can not be considered for applica-
tion of the system family. The features of the feature
model must have their counterpart in one of the com-
ponents. Optional features have to be optional in a
component, mandatory features can be optional in a
component – an always enabled optional feature of a
component is externally seen as mandatory. For com-
ponents implementing only one feature the whole
component may be part of an application, to realize
the conditions of the feature model. All the possible
combinations of optional and mandatory features in
the feature and component model are summarized in
Table 1.

Feature Model Component

optional optional allowed

mandatory optional allowed

optional mandatory Allowed only if component
can be left out of the applica-
tion, without influencing other
components.

mandatory mandatory allowed

Table 1: Possible combinations for the realization of features

To avoid implementation problems it is advisable to
either implement a single feature per component or

implement more feature in a single component, where
each feature is optional – can be “switched off”.

FF3 FF6

SF2

FF2FF7

FF5

FF1

SF3 SF1

Concept

1..*

Core

Component A

Component C

Component B

FF8

1

SM
FM

Structural Features
Functional Features

BA
BA

Features B mandatory
Features B optional

1..* Multiplicity

Comp Component
Implemented by

FF4

SF4

Figure 6: Example Application

As shown in Figure 6, the architecture of the sys-
tem family is strongly influenced by the feature model,
by the relations between features and the combination
rules. The core of the family is depicted by the func-
tional features FF1 and FF2. In addition, the core of
this simple example is build out of one component,
referenced by the structural feature SF1. Thus, struc-
tural features are a hint to components. In this exam-
ple the features are modeled in a way, that components
don't have overlapping features, what leads to a one to
one relation between features and components.

As an example for a more complex interrelation be-
tween components a sound studio system family was
prototypically developed. The sound studio has an
open architecture, so everyone is able to develop ex-
tensions for this system. New functionality can be de-
veloped by integrating new components into the sys-
tem family. In Figure 7 this example is shown, the
core of the family is not included in detail, just a link
to the core component is present.

Soundstudio

Audioeffect Play Record

Echo

Phaser

Chorus wav mp3 wav mp3

EffectZ EffectY Recordmp3WizReplay

Core

1..*1..*

Figure 7: Sound Studio example

For the sound studio the structural features
Audioeffect, Play and Record are optional. As shown,
a customer would have the choice between several
data formats for playing or recording and several
audio effects to change sound streams. Every func-
tional feature has a relation to one or more compo-

nents at the bottom of Figure 7. As stated above, com-
ponents should offer their functionality in an optional
way, to overcome the problems addressed in Table 1.
The problem with the decision process in this example
is the relation of structural features to components.
Which component should finally be taken to fulfill the
requirements of a given feature? Without additional
decision support we would end up with a choice by
chance.

Core

Selector

EffectYEffectZ

Echo Phaser Chorus

Figure 8: Selector component

Our component model supports decisions by condi-
tional features. The preferences of a customer are
mapped to the conditional features. In case the cus-
tomer has not enough knowledge of the domain the
component assembler will have to guide the customer.
We distinguish between special conditional features,
referring to single functions in the component and
general conditional features, which can be valid for all
components. For the sound studio example in Figure 7
a special conditional feature would be the recording
quality Record – MP3.

Another issue is the usability of conditional fea-
tures. The license model is without doubt more com-
plicated than the price. Here we found, that either the
preferences of the customer have to be clearly related
to conditional features or they have to be clearly dis-
tinguishable (for example smaller than or greater
than).

If a customer wants to have the Echo audio effect
and the Chorus effect at the same time we run into a
problem with the Phaser feature. The given customer
requirements lead to components EffectZ and EffectY.
Since Phaser is available in both components, which
Phaser implementation should be taken? For obvious
reasons, both are not possible. To solve this problem
we introduce a Selector component. It stores configu-
ration information about the Phaser implementation,
that should be taken. The Selector component, de-
picted in Figure 8, can be a simple dialog asking the
user to select the desired implementation or it can be a
passive component using a configuration file, contain-
ing the information which implementation to take

based on the domain knowledge. In case a Selector
component is not a possible solution, we can not meet
the customer requirements.

Component
Name : String
Description : String
Rationale : String
Version : String

Component Feature
Name : String
Optional : Boolean
De-activation rule : String

Datasheet

Property
Name : String
Description : String
Type : String
Value : String

Feature

Parameter
Configuration Rule : String

Parameter Feature

Dependency
to components
without a driect
relation to the
feature tree.

Interface
Name : String
Type : String
Multiplicity : int

require

provide

0..n

0..n

0..n

Componentmodel

0..n

Featuremodel (FORE)

0..n

0..n

0..n

Figure 9: Proposed component model

Component model
The component model is shown in Figure 9. A

Datasheet is attached to each component, to support
the automated selection of conditional features of a
component. The Datasheet holds a list of Properties
for a more detailed description of the component, like
the price, the producing company or the license
model. A Component knows about its Component
Features which provide information for the derivation
of an application of the system family. Parameters for
a specific Component Feature provide a Configura-
tion Rule, which describes the programatic steps to be
performed to use the Parameter. For optional Compo-
nent Features a De-activation Rule describes the pro-
gramatic steps to be performed to disable this feature.
The Component Feature and the Parameter have ref-
erences to the feature model. Components hold two
lists for their Interfaces, the one for the required inter-
faces, the other for the Interfaces the components pro-
vides. With this information only valid component
choices are possible. Providing and requiring inter-
faces must match. The maximum number of simulta-
neously usable interfaces by a component is expressed
with the multiplicity. If more than one component is
using an interface, we assume the component provid-
ing the interface has a management function for the
parallel access of its functionality. In addition, each
component holds a list of required components, which
are not part of the system family.

We haven't defined a specific language for the rules
in the model. The language is dependent on the soft-
ware system, which is used to analyze and execute the
model. Our prototype uses an Ant-file [14] for each
component. This file contains processes to toggle and
change component parameters, described in the Ant
scripting language. Our system for deriving an appli-
cation calls the Ant-scripts for the desired configura-
tion. A rule to switch off a feature in a component
simply calls an Ant-target, for example
“disableFeature”. By using a script language like Ant
we can easily use different components, since access
and usage of component features differs largely.

4 Conclusion and further work
In this paper we propose a component model for

the development of system families. This model is
based on a feature model, which describes the family
itself and all the relations between the features. This
feature model can be analyzed and automatically
checked for consistency and feature choices can be
checked for validity. The feature types of the feature
model are extended by this paper. Thus the feature
model structure directly reflects a first version of the
component architecture of the system family.

The component model holds all information for an
automated derivation of system family members,
specified by a set of feature and selected based on the
customer requirements. For components all the infor-
mation needed for “adjusting” the component is stored
in the component model.

For a complete development method the develop-
ment process, currently existing for the development
of the feature model, has to be extended to support
modeling components as well. We are currently work-
ing on the development process for the professional
usage of the component model. For the future we plan
to integrate the development processes of the feature
and the component model, for a more elaborate system
family development process. In addition we plan to ex-
tend the prototypically existing tools, like the de-
scribed Ant-scripts, towards a complete tool chain for
the whole development process.

5 References
[1] Kyo C. Kang, Sholom G. Cohen, James A. Hess, Wil-

liam E. Novak, A. Spencer Peterson, "Feature-Ori-
ented Design Analysis (FODA) Feasibility Study", Re-
port: CMU/SEI-90-TR-21 ESD-90-TR-222,
www.sei.cmu.edu, 1990.

[2] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo
Kim,Euiseob Shin, Moonhang Huh, "FORM: A Fea-
ture-Oriented Reuse Method", Pohang University of

Science and Technology, www.postech.ac.kr/e/, 1998.

[3] Kyo C. Kang, Kwanwoo Lee, Jaejoon Lee, "Feature-
Oriented Product Line Software Engineering: Princi-
ples and Guidelines", Pohang University of Science
and Technology, www.postech.ac.kr/e/, 2002.

[4] Krzysztof Czarnecki, Ulrich Eisenecker, "Generative
Programming: Methods, Tools, and Applications", Ad-
dison-Wesley, 2000.

[5] Detlef Streitferdt, "Feature-Oriented Requirements En-
gineering", Dissertation at TU-Ilmenau, 2004.

[6] OMG, "Unified Modeling Language Specification",
1999, www.omg.org.

[7] Andresen Andreas, "Komponentenbasierte Softwareen-
twicklung mit MDA, UML und XML", Carl Hanser
Verlag, 2003.

[8] Szyperski Clemens, Gruntz Dominik, Murer Stephan,
"Components Software - Beyond Object Oriented Pro-
gramming", ACM Press, 2002.

[9] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik
Kamsties, Oliver Laitenberger, Roland Laqua, Dirk
Muthig, Barbara Paech, Jürgen Wüst, Jörg Zettel,
"Component-Based Product Line Engineering with
UML", Addison-Wesley, 2002.

[10] Andreas Hein, John MacGregor, Steffen Thiel, "Con-
figuring Software Product Line Features", Springer
Verlag, 2001.

[11] Schryen Guido, "Komponentenbasierte Softwareen-
twicklung in Unternehmen", Deutscher Universitäts-
Verlag, 2001.

[12] Wallnau Kurt C., Hissam Scott A, Seacord Robert C.,
"Building System from Commercial Components", Ad-
dison-Wesley, 2002.

[13] Bosch Jan, "Design and Use of Software Architectures,
Adopting and evolving a product-line approach.", Ad-
dison-Wesley, 2000.

[14] The Apache Ant Project, "Ant - A Java Build Tool",
2004, ant.apache.org.

